You are here

Improving the Fitness Function of an Evolutionary Suspense Generator Through Sentiment Analysis

TitleImproving the Fitness Function of an Evolutionary Suspense Generator Through Sentiment Analysis
Publication TypeJournal Article
Year of Publication2021
AuthorsDelatorre, P, León, C, Salguero, A
JournalIEEE Access
Volume9
Pagination39626–39635
Date Published03/2021
Abstract

The perception of suspense in stories is affected not only by general literary aspects like narrative structure and linguistic features, but also by anticipation and evocation of feelings like aversion, disgust or empathy. As such, it is possible to alter the feeling of suspense by modifying components of a story that convey these feelings to the audience. Based on a previous straightforward model of suspense adaptation, this paper describes the design, implementation and evaluation of a computational system that adapts narrative scenes for conveying a specific user-defined amount of suspense. The system is designed to address the impact of different types of emotional components on the reader. The relative weighted suspense of these components is computed with a regression model based on a sentiment analysis tool, and used as a fitness function in an evolutionary algorithm. This new function is able to identify the different weights on the prediction of suspense in aspects like outcome, decorative elements, or threat’s appearance. The results indicate that this approach represents a significant improvement over the previous existing approach.

URLhttps://ieeexplore.ieee.org/abstract/document/9371672
DOI10.1109/ACCESS.2021.3064242