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ABSTRACT
During the last years, Intelligent Virtual Environments for
Training have become a quite popular application of com-
puter science to education, and are often used to allow stu-
dents to experience situations that would be difficult, costly,
or impossible in the real world.

These systems involve very different technologies,
ranging from computer graphics to artificial intelligence.
However, little attention has been paid to software engi-
neering issues, and most of these systems are developed in
an ad-hoc way that does not allow the reuse of their com-
ponents or even an easy modification of the application.

We describe an agent-based software architecture for
the tutoring side of the application, which is intended to be
easily extended and modified. In addition, we show how
this architecture has been integrated with a Virtual Envi-
ronment to support realistic training. To encourage the use
of this infrastructure, an authoring tool has been develop to
aid human tutors to create new training courses. Finally,
some experiments to test the suitability of the architecture
are shown.
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1 Introduction

Many of the advances in the application of intelligent
agents to the field of Intelligent Virtual Environments for
Training (IVET) have come from the Artificial Intelligence
community, such as Herman the Bug [1], Cosmo [2] or
Steve [3, 4].

However, little effort has been devoted to software en-
gineering issues, and in the few cases where some attention
has been paid to design methods, such as in Jacob [5], they
have focused in object oriented design rather than agent
oriented design.

The MAEVIF (Model for the Application of Intelli-
gent Virtual Environments to Education) project is the re-
sult of several experiences integrating virtual environments
and intelligent tutors [6, 7] that served to point out the prob-

lems that commonly arise in such integrations. The objec-
tive of the MAEVIF project was to define a model for the
application of intelligent virtual environments to education
and training, which involved:

• The definition of a generic model for intelligent learn-
ing environments based on the use of virtual worlds.

• The definition of an open and flexible agent-based
software architecture to support the generic model of
an IVET.

• The design and implementation of a prototype author-
ing tool that simplifies the development of IVETs,
based on the defined architecture.

• The definition of a set of methodological recommen-
dations for the development of IVETs.

In the remainder of this paper we will be briefly de-
scribe the architecture of an Intelligent Tutoring System
(ITS) (section 2) and how it has been extended to support
Virtual Environments (section 3). Then, we will show how
it has been transformed into an agent-based architecture
(section 4). In section 5, an explanation of the function-
ality of the authoring tool will be given. Section 6 will
present a discussion of the results that have been achieved
with the MAEVIF project, and finally, in section 7, some
future work lines will be shown.

2 Structure of an ITS

An ITS is a software application that makes use or Artificial
Intelligence to provide support to a student in a learning en-
vironment [8]. It consists of four modules, each of which
provides a very precise functionality: tutoring module, ex-
pert module, student’s module and communication module,
as originally described in [9] (see Fig. 1).

The Expert Module contains the knowledge about the
subject to be taught to the student, and it is the base for
the analysis of the answers provided by the student to the
tutor’s questions. This knowledge is divided into informa-
tive concepts, which are small pieces of information, and
the knowledge necessary to solve the exercises. The expert



Figure 1. Architecture of an ITS

module must be designed in a way that information is easily
accessible and modifiable. The way we have overcome this
problem is saving all the information in a relational data-
base. Each informative concept points to other concepts
that must be shown necessarily before or after it, as they
are all part of a particular block of concepts. Each block, in
turn, points to other blocks that must be shown necessarily
before or after it within a given module.

The Tutoring Module contains the pedagogic knowl-
edge, and is in charge of selecting the appropriate concepts
to be shown in the course. It also has the strategies, rules
and processes needed to drive the interactions between the
student and the system, in order to make decisions about the
concepts to teach and the exercises to be done by the stu-
dent, along with the moment when he must be interrupted
in order to correct him or make a suggestion. In addition, it
decides when it is appropriate to end showing informative
concepts and start with an evaluation. At the end of each
block of concepts, there is a bunch of exercises related to
the concepts explained in that block, so the student can test
his recently acquired knowledge. There is also an evalua-
tion at the end of each module, where exercises from all the
blocks that form that module will be chosen.

The Student’s Module keeps individualized informa-
tion about every student taking the course. It is responsible
for tracing what informative concepts have already been
taught to the student, how many exercises he has done and
the degree of success and time he has used to complete
them. To measure the student’s progress, we need some
metrics with which to compare what are the minimum and
average levels for a student to pass to the next level.

The Communication Module is in charge of the com-
munication between the student who is taking the course
and the ITS. This module must inform the tutoring module
about the actions that are performed by the student all along

the course. These actions may be the visualization of an in-
formative concept, the answering to an exercise in any of
the forms that it may adopt, or any of the actions performed
inside the VE. The communication module must make use
of all the available multimedia resources in order to make
the course as easy-going as possible, but ensuring it does
not make the course be too slow, which in the end could
bore the student.

Each of the described modules has a very important
role to play in the correct operation of the ITS.

3 An Extension to the Architecture of Intel-
ligent Tutoring Systems

The development of three dimensional Virtual Environ-
ments (VEs) has a quite short history, dating from the be-
ginning of the 90s. The youth of the field, together with the
complexity and variety of the technologies involved, have
led to a situation in which neither the architectures nor the
development processes have been standardized yet. There-
fore, almost every new system is developed from scratch, in
an ad-hoc way, with very specific solutions and monolithic
architectures, and in many cases forgetting the principles
and techniques of the Software Engineering discipline [10].
Some of the proposed architectures deal only partially with
the problem, since they are centered on a specific aspect
like the visualization of the VE [11, 12] or the interaction
devices and hardware [13]. When we get to IVETs, the
situation is even worse.

Our approach to the definition of an architecture for
IVETs is based on the agent paradigm. The rationale be-
hind this choice is our belief that the design of highly in-
teractive IVETs populated by intelligent and autonomous
or semi-autonomous entities, in addition to one or more
avatars controlled by users, requires higher level software
abstractions. Objects and components are passive software
entities which are not able to exhibit the kind of proactiv-
ity and reactivity that is required in highly interactive en-
vironments. Agents, moreover, are less dependent on other
components than objects. An agent that provides a given
service can be replaced by any other agent providing the
same service, or they can even coexist. New agents can be
added dynamically providing new functionalities. Extensi-
bility is one of the most powerful features of agent-based
systems. The way in which agents are designed make them
also easier to be reused than objects.

Starting from the idea that an IVET can be seen as a
special kind of ITS, and the pedagogical agent in an IVET
can be seen as an embodiment of the tutoring module of
an ITS, our first approach towards defining an standard ar-
chitecture for IVETs was to define an agent for each of the
four modules of the generic architecture of an ITS [9] (see
Fig. 1).

The ITS architecture, however, does not fit well with
the requirements of IVETs in several aspects:

• IVETs are usually populated by more than one stu-



Figure 2. Extended ITS architecture

dent, and they are frequently used for team training.
An ITS is intended to adapt the teaching and learning
process to the needs of every individual student, but
they are supposed to interact with the system one at a
time. However, in a multi-student IVET, the system
has to adapt both to the characteristics of each indi-
vidual student and to the characteristics of the team.
Consequently, the student module should model the
knowledge of each individual student but also the col-
lective knowledge of the team.

• The student is not really out of the limits of the ITS,
but immersed in it. The student interacts with the
IVET by manipulating an avatar within the IVET, pos-
sibly using complex virtual reality devices. Further-
more, each student has a different view of the VE de-
pending on their location within it.

• The communication module in an ITS is usually real-
ized by means of a GUI or a natural language interface
that allows the student to communicate with the sys-
tem. It would be quite intuitive to consider that the
3D graphical model is the communication module of
an IVET. However, there is a fundamental difference
among them: in an IVET, the learning goals are di-
rectly related to the manipulation and interaction with
the 3D environment, while the communication mod-
ule of a classical ITS is just a means, not an end.
Therefore, the ITS needs to have explicit knowledge
about the 3D VE, its state, and the possibilities of in-
teraction within it.

As a first step we decided to modify and extend the
ITS architecture by considering some additional modules
(see Fig. 2). First of all, we split the communication mod-



ule into a set of different views for all the students with
a particular communication thread for each student, and a
centralized communication module to integrate the differ-
ent communication threads. Then, we added a world mod-
ule, which contains geometrical and semantic information
about the 3D graphical representation of the VE and its in-
habitants, as well as information about the interaction pos-
sibilities. The tutoring module is unique to be able to make
decisions that affect all the students, as well as specific tu-
toring decisions for a certain student. The expert module
contains all the necessary data and inference rules to main-
tain a simulation of the behavior of the system that is repre-
sented through the VE (e.g. the behavior of a nuclear power
plant). The student module, finally, maintains an individual
model for each student as well as a model of the team.

4 An Agent-Based Architecture for IVETs

Taking the extended architecture described in the previous
section as a starting point, the next step is to decide which
software agents are necessary to transform this component-
oriented architecture into an agent-oriented architecture,
which has been designed using the GAIA methodology
[14]. In this methodology, the authors suggest the use of
the organizational metaphor to design the system architec-
ture, which basically consists of analyzing the real-world
organization in order to emulate its structure. It is men-
tioned that this approach does not always work (depend-
ing on particular organization conditions), but in this case,
considering the extended architecture of an ITS as the real
world, it seems quite appropriate to imitate its structure to
develop the system architecture.

Figure 3 shows how the extended ITS architecture is
transformed, from a modular point of view, into an agent-
based architecture. It has five agents corresponding to the
five key modules of the extended ITS architecture:

• A Communication Agent

• A Student Modelling Agent

• A World Agent

• An Expert Agent

• A Tutoring Agent

Each of these agents relate to other subordinate
agents, giving rise to a multi-level agent architecture.

4.1 Central Communication Agent

The Communication Agent delegates part of its responsi-
bilities to a set of Individual Communication Agents dedi-
cated to each student. There is also a Connection Manager
Agent, which is responsible for coordinating the connec-
tions of the students to the distributed system, and a set of
Device Agents in charge of managing the data provided by

the devices the students use to interact with the Virtual En-
vironment.

4.2 Student Modelling Agent

This agent is in charge of maintaining a model of each stu-
dent, including personal information, their actions in train-
ing sessions, and a model of the students’ knowledge. The
model of each student will take the form of another agent, a
Student Agent, which will reflect, as faithfully as possible,
all that is known or inferred about the student.

The Student Modelling Agent is assisted by:

• A Historic Agent, which is responsible for registering
the history of interactions among the students and the
system.

• A Psychological Agent, which is responsible for
building a psychological profile of each student in-
cluding their learning style, attentiveness, and other
personality traits, moods and emotions that may be in-
teresting for adapting the teaching process.

• A Knowledge Modelling Agent, which is responsible
for building a model of the student’s current knowl-
edge and its evolution.

• A Cognitive Diagnostic Agent, which is responsible
for trying to determine the causes of the student’s mis-
takes.

4.3 World Agent

The World Agent is related to:

• The 3D Geometrical Information Agent which has
geometrical information on the objects and the inhab-
itants of the world. Among other responsibilities, this
agent will answer questions about the location of the
objects.

• The Objects and Inhabitants Information Agent,
which has semantic knowledge about the objects and
the inhabitants of the world. This agent will be able to
answer questions about the utility of the objects or the
objects being carried by a student.

• The Interaction Agent, which has knowledge about
the possible actions that the students can perform in
the environment and the effects of these actions. It
will be able to answer questions like ”What will it hap-
pen if I push this button?”

• The Path-Planning Agent, which is capable of finding
paths to reach a destination point in the environment
avoiding collisions with other inhabitants and objects.
For the purpose of finding these paths, the A* algo-
rithm will be applied to a graph model of the environ-
ment.



Figure 3. Agent-based architecture

4.4 Expert Agent

The expert agent contains the expert knowledge about the
environment that is being simulated, as well as the expert
knowledge necessary to solve the problems posed to the
student and to reach the desired goals. Most of the ac-
tivities to be executed by the students consist of finding
an appropriate sequence of actions, or plan, to go from
an initial state of the environment to a desired final state.
These actions have to be executed by the team of students.
The Expert Agent delegates some of its responsibilities to
a Simulation Agent, that contains the knowledge about the
simulated system, and a Planning Agent, that is able to find
the best sequence of actions to solve different activities.

The plan for an activity is worked out by the Planning
Agent with the collaboration of three other agents:

• The Path-Planning Agent can determine whether there
is a trajectory from a certain point of the world to an-
other one.

• The Interaction Agent provides information about the
actions that a student can directly execute in the envi-
ronment.

• The Simulation Agent provides information about
some high-level actions that can be executed over the
simulated system (e.g., a nuclear power plant). One
of these high-level actions will typically require the



execution of one or more student’s actions; therefore,
a hierarchical planning will be performed. In the nu-
clear power plant domain, an example of a high-level
action may be to raise the reactor’s temperature. This
high-level action would be decomposed into two stu-
dent actions, go to the control panel and press the but-
ton that closes the input water valve.

4.5 Tutoring Agent

It is responsible for proposing activities to the students,
monitoring their actions in the virtual environment, check-
ing if they are valid or not with respect to the plan worked
out by the Expert Agent, and making tutoring decisions.
The activities that can be proposed by the Tutoring Agent
are dependent on the particular environment that is being
simulated in the IVET, and they can be defined by means
of an authoring tool. Some XML files will define the ac-
tivities in the IVET, the characters that should take part in
them and the role to be performed by each character.

The Tutoring Agent is assisted by a Curriculum
Agent, which has knowledge of the curricular structure of
the subject matter, and several Tutoring Strategy Agents,
which implement different tutoring strategies.

4.6 Integration with the Virtual Environ-
ment

The MAEVIF system is a Distributed Virtual Environment
that is thought to be used for team training. Thus, the de-
scribed multiagent system has to support the communica-
tion with several students working in different locations.

Each VE client has been developed using C++ and
OpenGL, and the multiagent system has been developed
using the JADE platform, which is based on the Java pro-
gramming language and allows for the distribution of the
multiagent system in different computers. Among the dif-
ferent options to communicate these two systems, CORBA
was chosen as the most promising alternative to achieve
this objective.

At the same time, to maintain a coherent representa-
tion of the view that each student has of the VE, all the
clients have been connected using Microsoft’s DirectInput
library.

Thus, when a student moves in the VE or interacts
with an object or another student, the change in the VE is
sent to the rest of the students, whose view is updated to
reflect these changes, and it is also sent to the tutoring sys-
tem, where these changes are processed by the appropriate
agents to supervise what the student is doing. The informa-
tion that is sent to the tutoring system is packed in different
CORBA objects, which are read by a communication agent
that is in charge of knowing when a change takes place
and to communicate it to the appropriate agent (this is a re-
striction of the JADE platform, which only allows agents
to send messages to other agents).

When an action has to be performed by the tutoring
system, it is also sent in a CORBA object to the appropriate
student. The VE has a well defined interface with which
it is possible to interact with it, so the correct method is
called from the CORBA object and the action, if necessary,
is automatically sent to the rest of the students so that they
can see the changes that the tutoring action produces in the
VE.

5 Authoring Tool

The described architecture has allowed us to build a basic
agent infrastructure that works as a runtime engine. One
of the main goals of this architecture is for it to be flexi-
ble enough, so it can be used for training in heterogeneous
environments without having to extensively modify it.

This can be done by changing the knowledge and
goals that the agents have according to the different training
needs. To ease this task, an authoring tool has been devel-
oped to help human tutors to design new training courses.

The authoring tool allows the human tutor to load an
existing 3D environment in which the training process will
take place. He can then select the objects with which the
students will be able to interact, and he can define the dif-
ferent actions that can be carried out with each object (e.g.
take, drop, use, open, put on...) and all the aspects related
to those actions (e.g. preconditions, postconditions, para-
meters, animations that must be shown...).

Subsequently, the author can create new training ac-
tivities. To do this, he has to decide how many students
have to take part in the activity, what their initial posi-
tions are in the virtual environment, what goals they must
achieve, and the initial state of the world. In turn, some
variables of the initial state will be generated randomly
every time the students have to train that activity, so that
they can solve the same problem starting from different sit-
uations.

As a prototype application of our tool we have devel-
oped a training system for nuclear power plants operators.
We had previously developed this system from scratch, dur-
ing a one year period. The re-development using our in-
frastructure has taken a few weeks, and the achieved func-
tionality is superior

6 Discussion

All along the design and development of the described ar-
chitecture, one of the aspects that has had a bigger impact
on it has been the planning process, since a change in the
planning method or in the way that knowledge is repre-
sented may imply changes in all the agents that take part
in it. At the beginning, a simple STRIPS (STanford Re-
search Institute Problem Solver) planner [15] was imple-
mented, but we are currently working on the utilisation of a
new planner based on Shop2 (Simple Hierarchical Ordered
Planner 2) [16] or LPG (Local search in Planning Graphs)



Figure 4. The MAEVIF application

[17]. This change involves the substitution of the planning
agent, but it may cause changes in the Interaction, Simula-
tion and Path-Planning agents, which also take part in the
planning task.

Another aspect we have tested is how easy it is to add
new functionality to the IVET. To do this, we have added
an embodied tutor whose goal is to observe what happens
in the VE and follow the student to supervise him. It has
been necessary to add two new agents: the Virtual Tutor
Agent, whose responsibility is to control the tutor’s avatar,
and the Perception Agent, who is in charge of monitoring
the events of the VE.

It has been quite easy to make these changes, since
the Perception agent can ask the World Agent for the in-
formation it needs and, according to this information, the
Virtual Tutor agent can decide how to follow the student
and send commands to its 3D representation through the
communication agents. Neither the World agent nor the
Communication agent have needed further changes.

Finally, we have tested the difficulty of using the de-
scribed system in a completely different environment, and
even with a different purpose. We have designed an experi-
ment where a group of zebras have to drink water in a river,
trying to avoid being eaten by a lion, but also trying not to
die of thirst.

In this case, the Perception and Virtual Tutor Agents
are in charge of controlling the zebras and lions, and the Tu-

tor Agent is responsible for deciding what to do according
to their state of thirst and hunger, assisted by the Planning
Agent. Some of the existing agents, such as the Simulation
Agent, have been removed, since their functionality was
not required.

However, some of the agents play a role that is signifi-
cantly different than the one they were originally thought to
play, so if they are to be used in such a way, the architecture
will probably have to be modified.

As a result, we can conclude that the architecture has
successfully supported the experiments, and has proven to
be flexible and extensible enough to allow changes and ex-
tensions without having to be redesigned.

7 Future Work

As it has been mentioned in the previous section, one of the
elements that can affect more deeply the system architec-
ture is the planning process. In addition, the STRIPS plan-
ning algorithm has been used as a test bed for the Planning
agent, but it lacks a lot of features that would be desirable
in an IVET, such as arithmetic operations or concurrent ac-
tions. Therefore, other planning algorithms are being eval-
uated, because of their improved functionality, but also to
test their impact in the system architecture.

It is mainly in the context of nuclear power plants
where we have been applying our prototypes. Up to



now, the Simulation agent hasn’t played a very active role.
Therefore, we are in the process of applying the system
to other environments where the simulation agent is more
complex, so that it can be tested whether its design is ade-
quate or it needs to be modified.

Finally, the Student Modelling group of agents have
been subject to less experimentation than the rest, since its
behaviour is quite complex from the pedagogical point of
view. Therefore, a research line has been established to
fully understand its implications and to modify the archi-
tecture where needed.
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