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Abstract

Building computational systems capable of creating and interpreting
narrative content has been an objective of Artificial Intelligence since its
beginnings. Its development, however, has been blocked by what is com-
monly known as the knowledge acquisition bottleneck, which does not per-
mit story processing in the large.

In this dissertation, a computational system that tries to take one step
forward in the target of making it possible to process narrative content
on a larger scale is presented. Two stages of research towards this goal
are detailed. A semantic approach to narrative processing not yielding
satisfying results is first explained. Then, a different system modelling
a focus shifting towards a structural management that provided better
results is shown.

The current state of the art is studied in detail. Empirical validation has
been carried out to prove to the possible extent the proposed hypothesis
(the plausibility of structural processing for narrative content). Discussion
about the most important aspects and design decisions is also included,
and possible future lines of investigation are also exposed.
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Chapter 1

Introduction

Ccomputational generation of narrative content has intermittently re-
ceived the focus of the Artificial Intelligence community from its be-

ginnings. It is possible to find several works on this field based on different
points of view and with different results and conclusions. This interest has
always been present, as narrations are a basic form of human communi-
cation. As far as we know, all human societies use narrations to transmit
knowledge of every form. Building systems capable of interacting with hu-
mans using narrative structures is therefore useful since it could make it
possible to create a more natural way of communication between machines
and people.

However, no globally accepted model about how a computational sys-
tem should manage narrations has been created. This is mostly due to the
fact that processing stories in the way humans do requires a strong model
of human psychology, and science has not developed such a model yet, at
least not a complete one.

Semantic processing of narrations tries to reach, from one or another
point of view, human understanding or generation of stories. In general,
semantic approaches have been the predominant tendency in automatic
story generation systems and other studies in the field [Meehan, 1976,
Turner, 1992, Bringsjord and Ferrucci, 1999, Riedl, 2004]. While noth-
ing prevents from success when reproducing the way in which humans
perform narrative generation or understanding, current results evidence
that this is not an easy task. Problems affecting Artificial Intelligence in
general (knowledge acquisition bottleneck, efficiency for complex domains,
and others) also appear in Computational Narrative. Since an important
amount of knowledge is required for implementing these systems, the cost
of building these big knowledge bases has been a barrier in the deploy-
ment of narrative creation programs in real applications beyond academic
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research.
These drawbacks seem to block the computational implementation of

concepts from modern Narratology [Herman, 2000] and other disciplines
like Psychology [Kelly, 1955], which conceive narrations as cognitive pro-
cesses not totally describable in terms of structural properties of sto-
ries, as opposed to the structuralist point of view of classic Narratology
[Propp, 1928, Barthes and Duisit, 1975]. However, current computational
techniques, and not only the state of the art in knowledge representation,
are still far from being able to model the inner processes that govern human
understanding of stories. Realizing advances in Narratology as computer
programs is not directly feasible because Narratology assumes conceptual
capabilities exceeding those currently available in machines.

According to these characteristics of Computational Narrative, one ma-
jor flaw of most narrative generation systems is that, while they are built
over generic models, the amount of different stories they can process, once
implemented, is somewhat reduced. This is one of the reasons that has
prevented computational generation of stories from being applied to pro-
duction systems in industry. In general, this has occurred because of the
knowledge acquisition bottleneck. Knowledge acquisition bottleneck is an
important defect of declarative approaches to Artificial Intelligence that
affects not only Computational Narrative, but also many other fields of
computation.

This inherent difficulty has not prevented Artificial Intelligence from
trying to build computational models that, while not mimicking the hu-
man ways of constructing narrations –because they are still unknown as
a whole– yield stories similar to those humans can write. At least, to the
extent of being recognizable for an external audience as human-written
narrations. The relative merits of these systems, while not definitive, have
made it possible to advance the current state of the art in Computational
Narrative.

This point is crucial in the analysis of Computational Narrative sys-
tems: their quality is generally measured in terms of their impact on hu-
man judgement. Just as other subfields of Artificial Intelligence do, the
target is the final interpretation of the story by humans (although many
systems certainly try to implement cognitive models). This approach is
the one that has been followed by this research: the objective is to cre-
ate a computational system whose outcome is acceptable by humans as
a story, although the creation process is admittedly far from the way in
which humans create stories.

Along the following chapters, a computational system that tries to par-
tially overcome the inherent problems of semantic approaches to Computa-
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tional Narrative will be presented. It is based on the previously introduced
idea: the objective is not to create a computational model that imitates hu-
man behaviour. Instead, the focus is to obtain a system able to generate
stories that are identifiable as such by humans.

In particular, the scientific focus of this research has been put on try-
ing to leverage the current capabilities of the scale at which stories can be
generated for a single system. As knowledge acquisition is clearly an influ-
ential bottleneck, this work proposes a semi-supervised narrative schema
acquisition process. The objective is to broaden the scale of generation by
allowing to iteratively add new narrative schemas with a reduced effort. In
this way, adding domain knowledge can be carried out in a more efficient
way (from the user’s perspective).

1.1. Motivation of the Research

Developing the current state of the art in Computational Narrative can
help to understand better, at least to some extent, the processes underlying
narrative creation. If new algorithms are built, models can be empirically
tested, presumably in a more efficient way than human behaviour. There-
fore, presumably as well, advances in computational Narrative, then, can
make it possible to find out inner details about psychological aspects of
human narrative.

Furthermore, current interest on Computational Narrative evidences
that real applications can benefit from improvements on the field. Video-
games can provide a better user experience by having non-player char-
acters create a coherent story, possibly adapting to the user behaviour.
Recommender systems can automatically create a narrative fiction based
on human experience, and large execution logs can be summed up in a
short, meaningful narration. The set of possible applications is vast. Some
discussion about this is presented in Chapter 9.

Against this background, while several computational narrative sys-
tems already exist, the amount of different stories that they can generate
is restricted, as it has been previously introduced. In order to generate
new stories, new domain information must be input by hand, which raises
the cost of improvement and scaling of the processing capabilities. This
is costly and previous evidence has shown that it prevents the previously
created and implemented systems from growing.

There exists large interest on finding new methods to reduce the cost
of broadening generative capabilities in classic approaches to story gener-
ation, like those previously described in literature [Riedl and León, 2008,
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Chambers and Jurafsky, 2008, Bringsjord and Ferrucci, 1999]. However,
it is well known that automating knowledge acquisition is a difficult task.
Science knows little about the underlying mechanisms driving human
learning, so computation cannot directly use that knowledge to formal-
ize knowledge or structure acquisition algorithms.

However, instead of trying to solve the knowledge acquisition issue as
a whole, it makes sense to restrict the scope of the problem to certain
subdomains. Concretely, narrative texts have certain properties which
can be used to create constrained models for schema acquisition, and this
characteristic can drive a more successful process.

It makes sense, then, to create a model that, if not totally substitut-
ing manual management, at least is able to reduce the amount of work
that humans must do in order to create new knowledge. Therefore, the
main motivation of this research is the benefit that studying the possibili-
ties of this kind of processing in order to help to automate the knowledge
acquisition process in computational narrative could bring. Since it is hy-
pothesized that it is possible to reduce the amount of human work needed
to extract narrative structures, this is considered a justified motivation.

As it will be shown in next chapters, trying to create a general model
covering different types of narrations and able to extract information of
any kind from stories is a too ambitious task. Although that would be
a very important advance for this field, this research has tried to remain
in a focused approach. While several other ways of gathering narrative
structures are possible, a full study about every alternative is outside the
scope of this work.

1.2. Objectives

Given that improving the generative capabilities of automatic story gen-
eration systems could be useful for the research community, the objective
of studying how this can be done is proposed. In particular, the objec-
tive of this research is to create a model that, at least partially, improves
the current state of the art in the automation of the addition of structures
needed for story generation systems for generation stories in new domains.

More concretely, the proposed objectives for this work can be summa-
rized in four sub-objectives that must be accomplished:

Creating a computational system receiving some set of human-written
stories as input.
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Extracting some instances of a certain structure from them, mini-
mizing to the possible extent the need for human intervention. This
structure will be defined as part of the research

Using those instances to automatically generate stories.

Validating the whole process through human judgement, trying to
restrict, to the possible extent, the interface between the system and
humans to realized stories readable in natural language.

The inherent characteristics of the research carry a problematic issue:
it is extremely difficult to prove with absolute certainty that the model
generates good stories without checking its quality against human criteria,
and these criteria varies depending on the human evaluator. Therefore
empirical validation based on human interaction will be used to check
that the extent to which the proposed objectives have been reached. The
percentage of agreement will also be measured.

It is well known that automatic acquisition of structures which can be
used to generate content of similar quality as the one that humans can
produce is far from trivial. Therefore, in order to make the objectives feasi-
ble, the objectives consider that the complexity of the processed narrations
will be low. This means that no complex causality relations or extremely
long stories are considered.

Only simple narrations are addressed in this work. This is a conflicting
definition from a conceptual point of view since there are many different
and not necessarily compatible definitions already (as detailed in Chapter
2). For this thesis, a simple narration is a linear sequence of time-ordered
events. At this point, no assumption is made about the content of simple
stories beyond the fact that they must be coherent, that is, a reader must
consider that all the content is causally connected in a logic unit (all events
happen because of a reason). Moreover, the stories that this thesis consider
must be complete: the reader must consider that the action is over and all
the conflicts are solved.

This definition of simple narrations, while slightly loose, cannot be com-
pletely formal, since, even with the requirements explained above, there are
several possible interpretations of “coherence” and “complete”. The rest of
this dissertation will exemplify, with instances of simple narrations, the
type of stories that the proposed system can process. Stories with so-
phisticated order of events regarding time and not completely reasoned
causality are considered “complex” and are not addressed in this work.

For instance, “John went to the cinema and, after that, he went home”
is a simple story. “When he arrived at home, John felt that he should have
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done something else” is not a simple narration because the reader can
easily perceive that there are some parts of the story that are not explained
(why does John think that he should have done something else?), and,
additionally, events are not expressed in time order.

More concretely, the target narrations for this research must satisfy
these requirements:

Narrations will only contain a single narrative thread or plot. No
complex, multiple causal lines are allowed.

Narrations will not be ordered by complex time relations. Strong
restrictions are imposed on narrations regarding time:

• Every event in a narration will last a single unit of time.

• In narrations, events are ordered by time.

A formal definition of narrations and the characteristics that are im-
posed for them to be processable by the proposed model are presented in
Chapter 3. The general objectives of this research, then, will only be appli-
cable to this restricted definition of narration. No claim is made about the
capabilities of the system beyond that definition.

1.3. Hypothesis

Section 1.2 just introduced the research objectives for this doctoral
work. The proposed solution will be explained in detail in the following
chapters and it is based on certain research hypotheses which are ex-
plained in this section.

The presented hypothesis were progressively developed during the re-
search work. Initially, the focus was set on pure story generation. Since
the intention was to offer some way to partially break the barrier of knowl-
edge acquisition, it was hypothesized that an evaluation function for nar-
rative content, as a change of perspective regarding story generation, could
unlock the development.

However, as it will be explained in Chapter 4, the hypothesis was not
correct and the evaluation function itself did not yield a satisfying solu-
tion. However, the knowledge acquired in the creation of this version of
the system helped to analyse the properties of narrations from a different
perspective, namely a structural approach. After this analysis, the next
hypotheses were formulated:



1.4. METHODOLOGY 33

A certain set of structural patterns in a narration is enough
to create stories rated as coherent by humans. That is, once
these structural relations are known, the coherence in these
terms can be determined just by analysing the presence or lack
of them.

That is, it was hypothesized that there exist some structural patterns in
narrations that can help to create narrations that humans identify as such.
Since it was though that structural patterns were more easily collectible
from texts, the next hypothesis, which is based on the previous one, was
also formulated as complementary:

The instances of the hypothetical structural patterns of narra-
tions can be collected under a certain degree of supervision by
a computer algorithm. Therefore, patterns extracted from co-
herent stories and patterns extracted from non-coherent stories
can be collected and used as acquired content for generating.

That is, if these structural patterns really exist and they can be formal-
ized as a computational representation, they can be gathered and used.

These two parts of the more general hypothesis state that structural
characteristics of text, leaving out semantic features, can be used to per-
form story processing. This process is explained in the rest of this disser-
tation. It will be shown how it the plausibility of these hypotheses have
been partially proven. An example domain has been used to show that, at
least for a restricted domain, the hypotheses make sense.

It is important to make explicit again that this kind of approaches to
Artificial Intelligence based on human criteria are always conflictive. As
the research assumes coherence based on human judgement, reaching an
absolute conclusion about the success of the system is not possible. Only
empirical demonstration, which is subject to discussion, can be carried
out.

1.4. Methodology

The development of this work has been driven by the application of a
research methodology based on the study of previous work in the field and
the application of available technologies to prove, to the possible extent,
the validity of the previously presented hypotheses.

A sequential approach to propose a scientific solution was carried out:
identification of the problem, formulation of a hypothesis, solution pro-
posal, experimentation and analysis of the results.
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The first stage of the research consisted on the collection of relevant
scientific and non-scientific literature in the area of Computational Narra-
tive. Therefore, work both from Narratology and Artificial Intelligence was
taken into account to learn from a rich enough background before tackling
the identification of useful objectives.

After the state of the art was studied, a problem was identified and the
proposal of an objective was made, namely advancing the current capabil-
ities in the field of knowledge acquisition for Computational Narrative, as
detailed in Section 1.2.

It was then hypothesized, based on previous research, that knowledge
acquisition for computer generated narrative could be based on the causal
properties of typical narrative. After this hypothesis was refined and con-
sidered plausible enough, a model based on informed brute force genera-
tion and evaluation of narrative structure was created.

Once implemented, the model was tested against human criteria in
order to validate the hypothesis. Given that hardly formalizable human
opinion is intrinsically involved in the solution, the hypothesis cannot be
totally validate for every single case. However, tests suggest that the ap-
proach is valid in general for most simple narrations.

After the evaluation was done, analysis of the results and discussion
about the collected conclusions was made, as it can be read in Chapters 8
and 9.

As most research works, the development has been supported by the
use of different tools that have prevented from carrying out all the work
from scratch and manually. Because the domain is so involved with Com-
puter Science, these tools have mainly been computer programs. Free
software has been chosen because of its availability and, at least for the
selected tools, its robustness.

Apart from a personal computer (AMD PhenomTM9550 Quad-Core Pro-
cessor), the implementation has been carried out using the SWI-Prolog
system [Wielemaker, 2010]. It is a free Prolog interpreter, and it is rea-
sonably efficient and modern, it is also actively developed.

All the documentation has been typeset using the LaTEX typesetting sys-
tem [The LaTeX Project, 2010], including this dissertation. For statistical
analysis a plot representation, the R language and system has been used
[R Development Core Team, 2010]. Short post-processing scripts mainly
used to store data and bulk conversions have been programmed in Lua
[Lerusalimschy et al., 2006] and Ruby [Thomas and Chad Fowler, 2005].
All the development, tests and analysis have been carried out in GNU/Linux
(Arch Linux) [Vinet and Griffin, 2010].
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1.5. Structure

This dissertation is structured as follows:

This first chapter, the introduction, has tried to briefly present the
motivation and hypotheses leading to this research.

The second chapter will extensively examine the previous research
and work that, either theoretically or practically, has influenced the
current research. A special focus is given to similar approaches to
story processing with computers.

Chapter 3 details the formal model of narrations that has been cre-
ated for developing the current solution. The conceptual assump-
tions and the computational formulation are included.

In the fourth chapter a preliminary study of how semantic approaches
to story generation based on an explicit evaluation function is pro-
posed. Results of this approach are included, and the conclusions
obtained from this work are shown and analysed. This first stage of
the doctoral research led to a new model based on structural content.

This structural content of narrations is addressed in Chapter 5. The
structural relation that was created is presented, and the way in
which narrations are managed from this perspective is presented.

Chapter 6 is devoted to the study of a system capable of collecting
structural rules for further computational processing of stories.

The implementation of the theoretical models presented in chapters
5 and 6 is explained in the seventh chapter. The empirical results
partially proving the plausibility of the main research hypothesis are
included in this chapter.

Discussion about the whole process, hypotheses and ideas can be
read in Chapter 8. The relation of this presented research with other
systems, its benefits and its drawbacks are all discussed in detail.

Finally, as a summary, the last chapter presents the most important
conclusions gathered from the development of this research, and the
ways in which it could be improved as part of the future work are
discussed.

Additionally, the appendix presents the original stories that have been
used as corpus. Concrete references to this content can be found in the
chapter documenting the implementation, Chapter 7.
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1.6. Chapter Summary

This chapter has introduced the main motivations and hypotheses that
have led to the development of this research work. A brief description of
the narrations that the proposed system will be able to handle has been
given, and the objectives, namely the improvement of the current state of
the art in narrative generation, have been presented.



Chapter 2

Previous Work

This chapter is devoted to the study of previous research and systems
whose development influences the current work. It mainly captures

information about theoretical and practical techniques related to the de-
sign and development of this research.

The chapter has been written with the intention of summarizing the
most important ideas of the studied research projects regarding the pre-
sented work. Many important concepts of previously developed systems
will not be addressed here in order to keep the text simple. Therefore, only
those concepts influential or relevant have been included.

Special focus has been given to previous approaches to story genera-
tion. These works have been radically influential in the proposed system,
and, since the final objective of this research is the computational process-
ing of stories, it was decided to put special attention to this field.

After the exposition of the proposed solution for the problems identified
in Chapter 1, the relation of the solution with the previous work shown
in this chapter will be discussed in Chapter 8. Some of the ideas and
contributions detailed in this chapter are directly used, while some other
approaches are not. This has been clearly justified in the Chapter 8.

2.1. Narratology

Narratology is the science devoted to the structuralist study of nar-
rations and the way in which humans understand and use it. Since the
approach to narrative content that Narratology proposes is strongly related
with Computational Narrative, it is useful to briefly introduce some of its
most important characteristics here.

Narratology is focused on the inner characteristics of narrative and on
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its similarities and differences with other kinds of communication. Nar-
ratology studies these characteristics trying to be partially isolated from
other phenomena like linguistics or semiotics. In this way, Narratology
remains as an independent discipline.

Some descriptions of narration define it as a tale, some others as the ac-
tion of telling something, and others focus the description on the structural
parts of the narrative discourse [Real Academia Española, 2010]. This
structuralist approach to the description of narrations sets the base for
modern Narratology, although the science of Narratology is retrospectively
considered, perhaps having its roots in Aristotle’s Poetics [Aristotle, 1974].
Aristotle postulated that the imitation of the real world creates arguments
from which the most important units are chosen and ordered in a plot.
Imitation of actions in the real world (praxis) forms an argument (logos)
from which events or fundamental units composing the plot (mythos) are
selected and ordered.

Narratology has its roots on the structuralist analysis of texts, based on
the work by Barthes, Genette, Todorov and others. [Barthes and Duisit, 1975,
Todorov, 1977, Genette, 1979]. Next sections show some important con-
ceptions and ideas related, to some extent, to the current research.

More modern, post-structuralist perspectives of Narratology have been
developed. For instance, Cognitive Narratology [Herman, 2000] considers
Narratology as a psychological phenomenon, and proposes a study of nar-
rative aspects in terms of a more cognitive perspective.

Next sections introduce some of the most influential models of narration
with regard to classic and modern Narratology. It will be noticeable that it
is possible to find clear analogies between different models, although they
use to be rooted on different conceptions of narrative.

2.1.1. Fable and Discourse

Chatman divides the narration in story and discourse [Chatman, S., 1986].
In this way, there is a clear division between the content that is to be trans-
mitted and the manifestation or realization of that discourse. He states
that existents are those entities which take part in the development of the
narration and that the chain of those events happening to these existents
form the story.

The discourse is the particular realization of a story, and it is mani-
fested and transmitted. The media and techniques can be diverse: voice,
perspective, time. . . Generating a discourse consists not only in choosing
adequate words to tell the story. Ordering the events is equally important,
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choosing the perspective of locating the action in some place or time is
crucial.

Crawford [Crawford, 2005] states that a narration is not about time or
spatial relations. He claims that a narration is a high-level structure based
on causality. He differentiates characters from narrative events, also from
the set of events or event from the world in which everything takes place.

A deeper structure is proposed by Russian formalists, in particular the
distinction between what is being told in a story, that is, the content that
will be transmitted from the narration to the audience ordered by their
natural sequence, called the fabula, and the order in which the set of
events or facts are laid out in the narration, called the sjuzet [Propp, 1928,
Viktor Shklovsky, 1917].

In general, full consensus regarding the structures defining Narratol-
ogy has not been reached. For instance, McKee considers that narrations
are structures that can be represented as a tree in which nodes are or-
dered according to discourse and chronology [McKee, 1997]. In general,
his approach is based on films. This tree-layout is also rendered as an
ordered set of events. However, this tree structure considers the root node
as the story, decomposed in acts which are decomposed in sequences, de-
composed in scenes which, finally, reach leaf nodes called beats. These
atomic beats contain the narrative meaning. According to McKee, several
beats can change the charge of the scene. Field also classifies narrations in
different levels in a slightly simpler model [Field, 1998]. Genette identifies
five concepts in Narratology to cope with more complex structures of narra-
tions beyond simple tales [Genette, 1966, Genette, 1969, Genette, 1972].
These five concepts are order, frequency, duration, voice and mood.

Another formalization similar to the one that Russian formalists created
is the one followed by Bal [Bal, 1998]. Her formalization considers the
fabula or the set of entities and events that the author creates in order
to shape the story. The discourse is the particular order and selection of
events from that fable. Finally, the presentation is the concrete realization
of the message of the author (the text in a novel, for instance) which is
used to convey the content to the audience.

An analogy can be found between Bal’s work and the three stages
pipeline structure that Reiter and Dale propose [Reiter and Dale, 2000].
This make it simple to apply a direct mapping between Bal’s ideas and
Computational Narrative approaches. The first stage as proposed by Re-
iter and Dale, the content planning, can be identified with the fabula, as
it consists on a set of concepts, entities and events. The sentence plan-
ning creates a middle representation in which the content is organized in
linguistic entities (sentences), and this could match the “discourse” as Bal
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defines it. Finally, the surface realization compares to the presentation
stage, since its outcome consists on a human readable version of the ini-
tial content. This has been carried out by systems like the recent work by
Peinado [Peinado et al., 2008].

Two entities are important in Narratology, in such a way that they
deserve special attention: characters and plots. They are examined in
Sections 2.1.2 and 2.1.3.

2.1.2. Characters

Characters are a fundamental constituent in a story. Aristotle consid-
ered that the most important element is the action [Aristotle, 1974], but it
can be assumed that characters appear, in several forms, in virtually every
type of story.

McKee defends that plot characters are just the two parts of the same
narrative phenomena, in such a way that it makes no sense to talk about
the plot without characters and vice-versa.

Chatman states that entities in a story are divided in characters and
elements in the scenario. Characters are usually humans or humanoid
beings (for instance, animals in fables) and the elements in the scenario
are places and objects.

2.1.3. Plot

The plot of a story is traditionally seen as a sequence of fact or events in
which causality links them meaningfully [Foster, 1941, Chatman, S., 1986].

The first definition of a story in terms of its constituent parts was first
tackled by Propp [Propp, 1928]. Propp defines a set of character functions,
which are those actions that define the role of some character once they
have been carried out by her or him. The main contribution of Propp is to
determine the functions that take place in all tales (at least in the corpus
he used, Afanasiev’s tales). For instance, the role of the hero receiving
a gift, or the princess getting married are classic functions which can be
instanced in several domains.

McKee states that plots are the result from the conflicts in the story.
Three types of conflict are defined by him: cosmic conflicts, those which
confront Good and Evil, social conflicts, taking place among a group of
people, and personal conflicts, in which the conflicted character faces her
or his own problems.

In general, Narratology has tried to find different abstractions of the
types of existing plots, with little consensus. Murray [Murray, 1997] iden-
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tifies that there are strong differences between the number of different
possible abstract plots that different authors define.

2.2. Computational Approaches to Narrative

Computational Narrative is devoted to the representation and process-
ing of narrations by computers. One of the most studied subfields of Com-
putational Narrative is the generation of stories, which is studied here.

Computational Narrative appears in the 70’s with the interest of repro-
ducing the human way of understanding and processing stories.

Roger Schank has been the pioneer of the study of the impact of narra-
tive on humans from a formal, computerizable point of view. Schank stated
that the way in which memory works is not only based on processes that
manipulate mental data, but instead as continuous recalling and adapting
process of previous stories that define our world, like in Case Based Rea-
soning (whose roots base on Schank’s work) [Schank and Abelson, 1977,
Schank, 1982].

Schank introduces the term script, which consists on short units of
sequential knowledge about the typical steps to be carried out in a certain
situation. For instance, Schank proposes the classical example of the
restaurant: one gets into the restaurant, the he orders food, he eats it,
etcetera. This common sense knowledge, according to Schank, is a very
important unit of knowledge in humans.

To implement this kind of semantical knowledge in computers, Schank
proposed Conceptual Dependency. Conceptual Dependency is a formal
method based on primitive actions and relations between them and their
objects [Lytinen, 1992].

Programs like SAM [Cullingford, 1981] or PAM [Wilensky, 1981] started
the development of a theory of Computational Narrative based on charac-
ters and the way in which they tried to reach their objectives. Some models
of the way in which memory processes could be implemented were also ad-
dressed [Kolodner, 1980].

This studies triggered the inverse approach: instead of trying to un-
derstand the human methods, it made sense to try to generate narrative
through models of the human methods, as it was carried out in TaleSpin
[Meehan, 1976, Meehan, 1981] and others.

After this initial stage, Artificial Intelligence applied to computational
approaches to narrative in these terms was left out, with the exceptions of
some systems [Turner, 1992, Mueller, 1987].
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Narrative Intelligence [Mateas and Sengers, 1999] and other multidisci-
plinary projects on Computational Narrative renew the interest of the field
in the XXI century. Theoretical formalization of narrative, development
of story generation systems, human narrative knowledge extraction sys-
tems, interactive digital narrative and narrative intelligence systems are
proposed, from this moment, as possible applications of Computational
Narrative.

2.3. Story Generation Systems

This section studies the most relevant work regarding story generation
in scientific literature. It is possible to notice that, although families of
systems can be clearly identified, they all follow different approaches and
focus on different aspects of storytelling. Systems are presented in time
order to put focus on the historical evolution of this research field.

2.3.1. Novel Writer

The first storytelling system in literature is Novel Writer [Klein et al., 1973].
Novel Writer generates murder stories within the context of a weekend
party. Generation in Novel Writer is tackled by simulating worlds in
which character’s behaviour is governed by probabilistic rules that, when
applied, change the state of the world.

Narrative is then considered to emerge from those changes, and the
resulting sequence of events and states conforms the narration. The sim-
ulation just changes the state of the characters, and the scenes that link
the events in the story are hard wired in order to create the weekend party
environment. This approach makes the system rather inflexible, and the
use of this fixed structure somehow resembles story grammars.

Novel Writer’s input includes the description of the world and the
characters’ initial relations. Random ingredients in the processing sums
to the input to compute the motives of the murder and the events in the
story.

Although Novel Writer permits the use of private universes in a some-
how uncoupled way (loading the universe in memory from a disk, using
it, and then storing it back in the disk), the description available does not
explain how to change domains by using different universes, if possible.

Story 1 shows an episode of a story generated using Novel Writer.
Novel Writer shows the first effort for automatic storytelling in scien-

tific literature. Although it only allows to generate one fixed type of story,
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The day was Monday. The pleasant weather was sunny. Lady Buxley
was in a park. James ran into Lady Buxley. James talked with Lady
Buxley. Lady Buxley flirted with James. James invited Lady Buxley.
James liked Lady Buxley. Lady Buxley liked James. Lady Buxley was
with James in a hotel. Lady Buxley was near James. James caressed
Lady Buxley with passion. James was Lady Buxley’s lover. Marion
following them saw the affair. Marion was jealous.

Story 1: Episode in Novel Writer (part of a larger story).

this system addresses some of the problems which are later studied and,
in some cases, solved, like story structure, character behaviour, and the
user input when generating the story.

2.3.2. Grammars: Rummelhart and Joseph

Rumelhart proposes a story generation system based on generative
grammars. Structural properties of narrations are captured in form of
rules in a top-down approach [Rumelhart, 1975]. While this structuralist
approach is quite common in some other domains (Narratology, for in-
stance), it is easily observable that, while Rumelhart’s system and others
alike [Lee, M., 1994, Lang, 1999] practically ensure coherence and cor-
rectness, their productivity of original stories rapidly decreases, since the
maintenance and update of such complex grammars is too costly.

Although this is a more recent system, Lang’s Joseph proposes a story
grammar (following Rumelhart’s work [Rumelhart, 1975]) in which it is
claimed that the basic structure of what constitutes a story is preserved,
while also reproducing a model of how humans creates stories [Lang, 1999].

An example of the output generated by Joseph can be read in Story 2.

2.3.3. TaleSpin

Meehan’s TaleSpin creates stories about woodland creatures, as can
be read in Story 3 [Meehan, 1976]. TaleSpin follows a character-centred
approach in which goals and events direct the story. TaleSpin creates the
story by carrying out a plan-based reasoning with forward-chaining (events
to consequences) and backward-chaining, by finding which events are to be
executed in order to achieve the goals that the animals in the stories have.
The planning system also considers goal decomposition, thus obtaining
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once upon a time there lived a peasant. peasant was hungry. one day
it happened that the peasant met christ. when this happened, peasant
felt awe. in response, peasant begged christ to provide food. christ
told peasant to eat ram. when this happened, peasant felt obedient. in
response, peasant made it his goal that ram would be eaten. peasant
trapped ram. ram whacked peasant. peasant believed it impossible
that ram would be eaten. peasant was hungry.

Story 2: A short story generated by Joseph.

sub-goals which are fulfilled by sub-planning.
TaleSpin addresses several important issues in storytelling. It fully

focuses on characters, and allows to have more than one problem (several
characters). Thus, characters’ objectives interfere or collaborate. Also,
treating characters as intelligent agents which have to solve their problems,
the notion of perception and reasoning appears: software characters are
no more a tool for the story, but a model of human characters. In TaleSpin
characters can compete, dominate, trust other characters (among other
relations). These relations and other character’s properties like vanity or
intelligence serve as motivation for their behaviour.

Regarding the analysis of what constitutes a story, Meehan proposes
that the existence of a problem, the degree of difficulty in solving it and
the level of such a problem make a valid story. However, this discussion
seems to be applied externally to the program.

Story 3 shows an example of TaleSpin.

John Bear is somewhat hungry. John Bear wants to get some berries.
John Bear wants to get near the blueberries. John Bear walks from
a cave entrance to the bush by going through a pass through a val-
ley through a meadow. John Bear takes the blueberries. John Bear
eats the blueberries. The blueberries are gone. John Bear is not very
hungry.

Story 3: Story generated by TaleSpin.
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2.3.4. Author

Dehn’s AUTHOR tries to simulate the author’s mind when creating a
story [Dehn, 1981]. Dehn states that the environment in which the story
happens is developed after the events that happen are decided, in order to
justify and frame the author’s goals.

Dehn considers that authors have narrative goals at two levels: the
particular narrative goals (what is to be told), and a number of meta-level
goals like the plausibility or the need for coherence. This meta-level goals
may translate into sub-goals, into which the characters may be led. A story
is defined as “the achievement of a complex web of author goals”. These
goals enforce the story structure and guide the construction, but are not
explicit in a story. Reformulation of the author’s goals, or conceptual
reformulation happens in the mind of the author when composing the
story: from the initial idea to three acts, then a chain of smaller episodes,
a dialogue, and so on.

AUTHOR organizes knowledge by considering the set of events in the
story and also the author’s experience. It tries to model knowledge in the
system by following theories of how the human mind works based both on
Psychology and Narrative theory [Schank, 1982, Kolodner, 1980].

Dehn considers story generation to be a creative process, and it must
capture two characteristics: the degree of deliberation and the degree
of serendipity. Two different meta-goals are postulated to model this:
achieving the current narrative goal, and finding better narrative goals
to find. The second meta-goal guarantees the duality between direction
and serendipity, and it allows for changes when new opportunities appear.

2.3.5. Universe

Lebowitz’s UNIVERSE generates short scripts for TV shows [Lebowitz, 1983,
Lebowitz, 1985]. In UNIVERSE, several complex characters play out many
simultaneous, possibly overlapping stories that never end. This system ad-
dresses the creation of characters by modelling them with a complex data
structure whose fields are filled in partly automatically, although human
input is necessary.

Many storytelling systems are aimed at creating a complete story, from
the beginning to the end, but this is not the approach in UNIVERSE. This
system generates plots that never end, and it is intended as a help tool for
human authors, although it was intended that UNIVERSE could generate
full stories autonomously.

Whereas Dehn follows the idea that the plot must be first built in order
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to get a good story, and then let the world emerge from the sequence of
events, Lebowitz thinks that good stories are achieved by creating a world,
and then let the story develop from it.

The implementation of UNIVERSE uses plan-like unit to generate plot
outlines. Some characteristics usually present in stories (like dialogues
and text generation) are postponed. Plot fragments provide methods for
the characters to achieve the author’s goals. This intends to lead the gen-
eration to conflicts and interesting scenes which would not be reached with
plain agent-like planning for characters. The system operates by choosing
a goal whose preconditions are fulfilled and performing the appropriate ac-
tions. As the planning algorithm is not a depth-first search, the expanded
goals can be unrelated between them. Coherence is ensured by maintain-
ing a graph with relations between goals and previous told events in the
story.

Regarding creativity, UNIVERSE is able to create new plot fragments by
generalizing existing ones and, with the resulting structure, create a new
instantiation of the structure. This process ensures correctness without
information loss by a causal analysis of the initial fragment, and to ensure
a logical sequence, an overall story plot, only a subset of attributes in
the generalized structure are subject to change. This makes it possible
to identify some fundamental author goals, but the given justification just
explains that this is validated by successful experience in the generation.

2.3.6. MINSTREL

Turner’s MINSTREL generates short stories about King Arthur and his
Knights of the Round Table [Turner, 1992]. MINSTREL is the first story-
telling program that explicitly addresses the creativity as an objective and
its implications in the generation of stories. MINSTREL could tell about 10
stories half to one page in length, and it could create a number of shorter
story scenes.

Goals and plans are used by MINSTREL to perform story generation. It
can handle author goals and character goals. On its two levels of operation,
MINSTREL switches between planning stage, in which author goals are
consumed by either breaking them into smaller goals or passing them
to the problem-solving stage, which attempts to solve these problems by
adding the required information in the story. Each time a new scene is
created, MINSTREL revises the memory of author goals to check whether
it is possible to achieve one of them. If this is the case, the goal is processed.
This operation resembles Dehn’s meta-goal of trying to fulfil author goals.
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One of the most interesting MINSTREL’s features is the ability of han-
dling episodic memories, which it does by using the so called TRAMs,
Transform Recall Adapt Methods. Basic TRAMs just instantiate any match-
ing schema in the story from a basic query, but more sophisticated ones
perform a basic adaptation on the query, query the episodic memory with
it and returning an adaptation and modification of the query. TRAMs
can be chained, thus creating a chain of adaptations, which is a kind of
generalization. Turner claims this is the base for creativity in MINSTREL.

An example of the generative capabilities of MINSTREL is given in Story
4.

The Vengeful Princess
Once upon a time there was a Lady of the Court named Jennifer. Jen-
nifer loved a knight named Grunfeld. Grunfled loved Jennifer.
Jennifer wanted revenge on a lady of the court named Darlene because
she had the berries which she picked in the woods and Jennifer wanted
to have the berries. Jennifer wanted to scare Darlene. Jennifer wanted
a dragon to move towards Darlene so that Darlene believed it would
eat her. Jennifer wanted to appear to be a dragon so that a dragon
would move towards Darlene. Jennifer drank a magic potion. Jennifer
transformed into a dragon. A dragon moved towards Darlene. A dragon
was near Darlene.
Grunfeld wanted to impress the king. Grunfled wanted to move towards
the woods so that he could fight a dragon. Grunfeld moved towards
the woods. Grunfeld was near the woods. Grunfeld fought a dragon.
The dragon died. The dragon was Jennifer. Jennifer wanted to live.
Jennifer tried to drink a magic potion but failed. Grunfled was filled
with grief.
Jennifer was buried in the woods. Grunfeld became a hermit.
MORAL: Deception is a weapon difficult to aim.

Story 4: Story generated by MINSTREL.

2.3.7. Brutus

Bringsjord and Ferrucci’s Brutus performs an automatic generation
process of short stories about betrayal [Bringsjord and Ferrucci, 1999].
Aspects about creativity in the generative process in Brutus are discussed
in the literature, and Brutus’ authors claim that it is a valid approach to
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Computational Creativity. However, the amount of different stories it can
generate is quite restricted.

A three level operation governs the behaviour. First, a frame containing
the base of a story is instantiated. Then, a character simulation process is
run in order to obtain the main events that happen in the story. Finally, a
grammar based solution generates the final output.

Brutus is a knowledge intensive program which stores the information
in several formats depending on the purpose. Story themes and Story
frames represent constraints that put limits on what can be generated,
resembling Sharples’ constraints [Sharples, 1996], in the meaning and the
events in the story and in the pure rhetoric. Character behaviour in the
simulation is governed by rules that allow them to think and plan, or they
just behave in a reactive way. Finally, story grammars at several levels
guide the final generation.

Story 5 shows an example of Brutus.

2.3.8. MEXICA

Pérez y Pérez’s MEXICA generates short stories about the early inhabi-
tants of Mexico City (the mexicas) [Pérez y Pérez, 1999]. MEXICA performs
the generation by following Sharples’ model of creative writing. MEXICA
also puts a heavy focus on emotions, which are considered in this system
as a main component of human creativity.

Sharples’ account for writing is the base for MEXICA’s narrative model
[Sharples, 1996, Sharples, 1999]. This system is conceived as a very flex-
ible tool that allows the user to parametrize several aspects of storytelling
to experiment MEXICA’s generative capabilities.

To represent stories, MEXICA uses story actions, or actions that can
be present in the story and whose meaning is defined in terms of a set of
conditions and preconditions. Previous stories are also available for the
process, and these stories are defined in terms of story actions.

MEXICA is able to build its own set of knowledge schemas from previ-
ous stories, and these schemas are represented using a particular knowl-
edge structure called Story World Contexts (SWC), which are instances of
context with emotional links and actions. They act somewhat like rules
during the engagement phase, associating a given action with the plot so
far if it appears in a Story World Context that matches the plot so far.
Knowledge in Story World Contexts is used to find the next action in the
plot.

Following Sharples’ model, in engagement, MEXICA ignores precondi-
tions for allowing a free, unconstrained generative process. In the reflection
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Dave Striver loved the university. He loved its ivy-covered clock-towers,
its ancient and sturdy brick, and its sun-splashed verdant greens and
eager youth. He also loved the fact that the university is free of the
stark unforgiving trials of the business world –only this isn’t a fact:
academia has its own tests, and some are as merciless as any in the
marketplace. A prime example is the dissertation defense: to earn the
PhD, to become a doctor, one must pass an oral examination on one’s
dissertation.
Dave wanted desperately to be a doctor. But he needed the signatures
of three people on the first page of his dissertation, the priceless inscrip-
tion which, together, would certify that he had passed his defense. One
the signatures had to come from Professor Hart. Well before the de-
fense, Striver gave Hart a penultimate copy of his thesis. Hart read
it and told Striver that it was absolutely first-rate, and that he would
gladly sign it at the defense. They even shook hands in Hart’s book-
lined office. Dave noticed that Hart’s eyes were bright and trustful, and
his bearing paternal.
At the defense, Dave thought that he eloquently summarized Chapter
3 of his dissertation. There were two questions, one from Professor
Rodman and one from Dr. Teer; Dave answered both, apparently to
everyone’s satisfaction. There were no further objections. Professor
Rodman signed. He slid the tome to Teer; she too signed, and then slid
it in front of Hart. Hart didn’t move. “Ed?” Rodman said. Hart still sat
motionless. Dave felt slightly dizzy. “Edward, are you going to sign?”
Later, Hart sat alone in his office, in his big leather chair, underneath
his framed PhD diploma.

Story 5: A short story generated by Brutus.
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stage, MEXICA checks for correctness, novelty and interest. For each ac-
tion whose preconditions are not met, the algorithm in the reflection stage
searches and inserts actions that met these preconditions. Novelty and
interest are kept by comparing the current partial story with the previous
stories set. Novelty is computed by comparing the set of actions with the
partial story, and interest is computed by examining the emotional tension
in the sequence. In case MEXICA finds a poor rating for novelty and inter-
est, the reflection stage sets guidelines for engagement, which modifies the
set of possible actions that can be included in the story. This models the
influence of previous stories in the generation. When the generation comes
up with a situation in which the generation cannot continue (the so called
impass), MEXICA seems to add an action chosen from similar contexts in
previous stories.

MEXICA clearly follows most closely Sharples account from the point of
view of its control flow. However, MINSTREL seems to operate on resources
that match more closely the type of constraints that Sharples describes.
Story 6 shows a short example of MEXICA’s generation abilities.

Jaguar knight was an inhabitant of the Great Tenochtitlan. Princess
was an inhabitant of the Great Tenochtitlan. Jaguar knight was walk-
ing when Ehecatl (god of the wind) blew and an old tree collapsed in-
juring badly Jaguar knight. Princess went in search of some medical
plants and cured Jaguar knight. As a result Jaguar knight was very
grateful to Princess. Jaguar knight rewarded Princess with some ca-
cauatl (cacao beans) and quetzalli (quetzal) feathers.

Story 6: A short story generated by MEXICA.

2.3.9. The Virtual Story Teller

TaleSpin’s approach to storytelling based on simulation of characters
has been recently followed by The Virtual Story Teller, which tries to create
a scenario in which the characters perform and, as a result of that perfor-
mance, a story emerges [Theune et al., 2003, Swartjes and Theune, 2006].

The Virtual Story Teller consists on a multi-agent system in which
characters are represented by software agents and an extra agent directs
the story, like a director. Agents have their own knowledge about the
world and own rules that direct their behaviour. The system also includes
a narrator agent, which tells the story in natural language.
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The director agent has knowledge about classic stories and issues or-
ders to other agents by adding new entities (objects or characters), motivat-
ing agents (giving specific actions to characters) and proscribing, disallow-
ing certain actions. In any case, the director can not directly manipulate
other characters, which must decide what to do taking into account the
director’s advices. The Virtual Story Teller also includes metrics for
extra-structural content like “impressiveness”, surprise and others.

2.3.10. FABULIST

Rield’s work on story generation is based on a planning approach to
building stories [Riedl, 2004]. In order to create meaningful stories, Fabu-
list adds character believability to coherent plots. With this definition he
offers a modification of a previous partial order planner and creates the
IPOCL algorithm (Intent-driven Partial Order Causal Link), which includes
characters’ intentions.

This research is heavily based on the concept of causality, which is the
main relation used to create a coherent plot. It is assumed that narrations
in which all events are correctly caused are understood as coherent by a
human audience. The model is then improved by the addition of character
believability, that is, the perception by the audience that the characters
playing a role in the story perform because of a coherent set of intentions
and beliefs. It is assumed in this work that character believability raises
the quality of the stories.

Story 7 shows an example of generation carried out with Fabulist.

2.3.11. ProtoPropp

Peinado’s thesis presents a knowledge intensive system to perform story
generation [Peinado et al., 2008]. ProtoPropp is able to generate short sto-
ries based on a detailed ontology in which narrative characteristics are
described in terms of description logic predicates.

ProtoPropp knowledge captures both common narrative knowledge and
Propp’s narratological functions for short tales. In this way, structuralist
content is applied to story generation by establishing, trough a graphical
user interface, some parameters by hand, like the role that characters
must play in a story.

Peinado’s work also put explicit focus on creating a set of formal metrics
to evaluate the quality of stories, namely linguistic quality, coherence, inter-
est and originality. These receive values in the domain of real numbers and
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There is a woman named Jasmine. There is a king named Mamoud.
This is a story about how King Mamoud becomes married to Jasmine.
There is a magic genie. This is also a story about how the genie dies.
There is a magic lamp. There is a dragon. The dragon has the magic
lamp. The genie is confined within the magic lamp.
King Mamoud is not married. Jasmine is very beautiful. King Mamoud
sees Jasmine and instantly falls in love with her. King Mamoud wants
to marry Jasmine. There is a brave knight named Aladdin. Aladdin is
loyal to the death to King Mamoud. King Mamoud orders Aladdin to get
the magic lamp for him. Aladdin wants King Mamoud to have the magic
lamp. Aladdin travels from the castle to the mountains. Aladdin slays
the dragon. The dragon is dead. Aladdin takes the magic lamp from
the dead body of the dragon. Aladdin travels from the mountains to the
castle. Aladdin hands the magic lamp to King Mamoud. The genie is in
the magic lamp. King Mamoud rubs the magic lamp and summons the
genie out of it. The genie is not confined within the magic lamp. King
Mamoud controls the genie with the magic lamp. King Mamoud uses
the magic lamp to command the genie to make Jasmine love him. The
genie wants Jasmine to be in love with King Mamoud. The genie casts
a spell on Jasmine making her fall in love with King Mamoud. Jasmine
is madly in love with King Mamoud. Jasmine wants to marry King
Mamoud. The genie has a frightening appearance. The genie appears
threatening to Aladdin. Aladdin wants the genie to die. Aladdin slays
the genie. King Mamoud and Jasmine wed in an extravagant ceremony.
The genie is dead. King Mamoud and Jasmine are married. The end.

Story 7: Example story generated with Fabulist.
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a linear combination of them is output as the final quality. In this way, hu-
man judgements about the generated stories are acquired and used to val-
idate his work. In particular, interest has influenced the seminal work for
this thesis [León et al., 2007a, Hassan et al., 2007a, Hassan et al., 2007b]

Story 7 shows an example a story that ProtoPropp generated.

Once upon a time... the swan-geese fell in the trap of the king. The
frog used a magic spell against the witch. The king scared somebody.
Others and the knight heard about the witch. The swan-geese used a
magic spell against the lioness. The king heard something. The swan-
geese heard about the king. The little boy shared information with
somebody. The little boy said to go outside. Not went outside. The
lioness departed with the frog. The king fell in the trap. The lioness
enchanted somebody. The lioness went outside.

Story 8: Example story generated with ProtoPropp.

2.3.12. Summary

Several story generation systems have been presented in the past sec-
tions. As a summary, this section presents a table (Table 2.1) which com-
pares some of the most identifiable properties of such systems, in order to
create a centralized schema of the differences of the previously explained
approaches.

2.4. Evaluation of Narrative

Evaluation and understanding of narrative has been addressed mainly
by psychologists. For instance, Kelly analyses how personalities develop
according to the structural constructions that humans create through the
stories they read or hear [Kelly, 1955]. Applebee studied how the evaluative
capabilities of narrative in children grow in parallel with their storytelling
abilities [Applebee, 1978].

Literature in Natural Language Processing offers a more extensive set
of examples and approaches to evaluation than Computational Narrative
[Jones and Galliers, 1996]. In general, evaluation in Computational Nar-
rative is mainly focused on purely narrative properties or in quality in
general (as shown in some systems in Section 2.3).
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System Plot goal
based

Character
goal based

Author
goal based

Creativity Approach

Novel
Writer

no yes no no planning

Rummelhart
and Joseph

yes no no no grammars

TaleSpin no yes no no planning
Author no no yes yes knowledge

intensive
Universe yes yes no no planning

MINSTREL yes no no yes previous
cases

Brutus yes no yes yes knowledge
intensive

MEXICA yes no no yes engagement
& reflection

The
Virtual
Story
Teller

no yes yes no planning

FABULIST no yes yes yes planning
ProtoPropp yes no no no knowledge

intensive

Table 2.1: Comparison of story generation systems.
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Regarding explicit computational evaluation of narrative, there is in-
terest on some kind of common metric to compare the quality of story
generation systems. Rowe et al. propose StoryEval, a framework for mea-
suring and comparing story generation systems. StoryEval suggests to
evaluate these systems by taking into account narrative metrics, cognitive-
affective studies, director-centric studies, and extrinsic narrative evaluations
[Rowe et al., 2009].

2.5. Acquisition of Narrative Schemas

In general, acquisition of structures, information or schemas regarding
computational approaches is addressed by a set of techniques commonly
grouped as the field of Machine Learning. Machine Learning is the disci-
pline devoted to discover and program algorithms which make computers
“learn” new knowledge from existing data, without the need for the pro-
grammer to directly input that data [Wu, 1992]. While several types of
approach are studied in this discipline, none is specifically focused on nar-
rative content. Therefore, this section will remain in the field of acquisition
of information, structures or any other form of data in stories.

Overcoming the knowledge acquisition bottleneck in narrative content
has been previously addressed from different points of view. For instance,
Riedl focus the approach on managing small units of knowledge called
vignettes. The possible uses of these vignettes are based on acquisition
and adaptation of them [Riedl and León, 2008, Riedl and Sugandh, 2008,
Riedl and León, 2009]. Vignettes capture in the form of short narrative
scripts short episodes, for instance, a fight between a knight and a king
or the kidnap of a princess. Through adaptation of vignettes, the domain
can be modified while still retaining the action. For this approach to make
sense, an initial collection of vignettes is required. Analogy making or Case
Based Reasoning are tools being considered to adapt vignettes between
different domains.

Finlayson proposes a computational system capable of automatically
creating narrative morphologies from an existing corpus of stories, in par-
ticular, sort versions of Shakespeare’s plays [Finlayson, 2009]. While this
work is able to output rules for a new morphology without the need of
human intervention for creating them, it has only been tested against a
reduced set of inputs.

Chambers and Jurafsky present a statistical approach to learning of
narrative schemas from a corpus of news [Chambers and Jurafsky, 2008,
Chambers and Jurafsky, 2009]. Their approach is based on the analysis
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of the statistical co-occurrence of actions or events in a big corpus, and
from this analysis, the quality of the learnt relations is tested in the so-
called narrative cloze, which tests the quality of the acquired relations
by generating full narrations from incomplete parts. A related system,
based on stochastic procedures and covering a full generative pipeline, is
presented by McIntyre and Lapata [McIntyre and Lapata, 2009].

A similar approach, based, like the one that will be later presented in
this dissertation, on a generate-and-test execution pattern was developed
by Kaelbling [Leslie Kaelbling, 1994]. In the domain of Boolean formulae,
his work shows an efficient solution for learning based on a simple algo-
rithmic approach. While the domain is quite different from the one studied
here, the underlying ideas are similar.

2.6. Chapter Summary

This chapter has examined the previous knowledge and approaches
(narratological and computational) forming the base for the proposed re-
search. Those systems whose characteristics are related to the current
thesis have been highlighted, and alike approaches have also been stud-
ied.



Chapter 3

Definition of Narrations

Narrations can be defined in many ways, but for a computational system
to be realizable, a formal definition must be created. In this chapter

the definition of what is considered a formal story for this work and the
parts constituting it is shown.

There exist several approaches to formal representation of narrations
already. Previous research studied in Chapter 2 showed that every Compu-
tational Narrative system uses to create its own representation. This is due
to the inherent differences existing between these systems: since each one
is focused on a particular aspect of computational narrative, they adapt
their representation to their needs. This makes it difficult to just take a
previously created model because they are not general.

However, although there exist clear differences, it is possible to identify
patterns underlying all representations. The next enumeration, while not
containing an exhaustive list, makes explicit some of these characteristics:

The concept of sequence is always considered. That is, narrations
are always represented as an ordered list or equivalent.

The focus of semantic content is set on the verb or action. Narrations
are mainly structured by their actions. When creating knowledge
bases, most previous story generation systems define the meaning
(in whatever terms) mainly based on the verbs, and only secondarily
on the characters carrying out the action.

Some way to uniquely represent entities (characters, places. . . ) is
used. This is often carried out by using tokens or logic atoms.

First-order logic concepts are commonly used. This does not happen
only in Computational Narrative, but in knowledge representation in
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general. In particular, the concept of variable is often present in most
story generation systems.

Since no general definition of how a narration must be formalized for
using it in computer systems has been explicitly proposed yet, and al-
though many options exist, it has been considered that the best approach
is to create an ad-hoc definition, while still taking into account previous
work.

Taking into account previous representation of stories, then, a formal
definition of narration has been created and iteratively refined to match the
requirements of the proposed approach to computational narrative. During
this creation, several formalizations were considered [León et al., 2007b,
León and Gervás, 2008, León et al., 2008]. It will be seen that the previ-
ously identified characteristics of common formal representation of narra-
tions are present in this proposed formalism. This has not been set as a
constraint, instead, those characteristics have arisen during the develop-
ment of the model as a natural way of representing stories for computa-
tional processing.

Therefore, explicitly imitating previous approaches to represent narra-
tions is not intended. No conceptual model has been followed to create
this particular formal description of narrations. The computational algo-
rithm for processing stories based on structural properties is the focus of
this research, thus the representation fully adapts to the computational
requirements, and not the other way around.

3.1. Definition of Narration Regarding Concep-
tual Models for this Research

No claim about the psychological plausibility of the formal definition of
narrations is made. The proposed formalism has only been created for the
model to be implementable, and whether these formal structures used to
define stories match human mental processes or not is not addressed.

That is, although there exists several models of what a narration is from
a human perspective, none has been explicitly followed. This has been
done on purpose to permit full freedom in the development of the model of
narrations. The specific model of what a narration is from a formal point
of view is not the objective in this research. Therefore, it was decided that
applying a conceptual model would involve the additional work of proving
that the computational definition matched the conceptual definition, and it
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was considered useless from the current perspective and for this particular
investigation.

This research defines narration or story as a set of events ordered in
chronological time, therefore identifying, to some extent, the terms fabula
and narration, according to the definition of the term fabula coined by
Russian formalists [Propp, 1928]. It is important to note that this is an ad-
hoc definition used as nomenclature for this dissertation: no similarity with
any psychological, formal or narratological concept is intended nor any
definition in these terms is made. From now on, any reference to narration
or story refers to the same concept, except where otherwise stated.

This research is focused on the study of formal story outlines, and
not on textual narrative or complex literary characteristics. This focus on
outlines has been also chosen in most previous work on story generation
[Meehan, 1976, Bringsjord and Ferrucci, 1999, Riedl and Young, 2006].

Therefore, no study about text realization or artistic properties of nar-
rative has been carried out. Although simple text realization has been
created in the implementation, it has only been programmed for present-
ing the story to human evaluators and it is accepted that no real quality
has been reached. The intended contribution, then, ranges in the domain
of symbolic representation of stories and research on Natural Language
Processing, in any of its forms, is not addressed.

3.2. Formal Definition of Narration Used in this
Research

According to the lack of imposed conceptual constraints shown in Sec-
tion 3.1 and based on the common characteristics that have been identi-
fied in previous research on computational narrative, a formal definition
of narrations has been created for this research. This has been done in
order to allow for computations over formal versions of narrations in the
implementation and to define the formal model for evaluation and learning.

The formal representation remains at discourse level, and does not
assume that the used parts constitute a representation of a domain. It
allows for representation of world knowledge (as it is shown in Chapter 4),
but the semantics that the cognitive level assigns are not considered in
this formalism.

The formal model is presented in ascending order regarding its con-
stituent parts. First, the most basic elements, namely the tokens, are
shown. Then the actions, and then the narrations themselves. These
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names have been assigned to these parts in order to refer to them, and
no similarity with the concepts they represent when using these words in
English is claimed. Although the selection of the names is clearly influ-
enced by similar concepts in Narratology, only the formal meaning that is
assigned in this research must be interpreted when referring to them.

No claim is made about the further applicability of this definition in
other systems. It has been created for this project and, although it could
serve to base other research projects, this has not been explicitly intended.

3.3. Constituents of Formal Narrations

Next subsections detail the constituent parts of the formalization of
narrations, which is described in Section 3.4.

3.3.1. Tokens

Tokens are atomic elements defining a single thing, character, idea or
whatever single instance of any concept. They can represent any entity in
some particular domain, but they are restricted so that they cannot refer
to any part of the narration. Therefore, tokens cannot represent actions
nor narrations (these are defined in following sections).

Tokens are uniquely specified by their name. This means that two
tokens with the same name are actually representing the same concept.
Examples of tokens are john, bird, house, hope or sad. In this sense,
tokens are similar to logic atoms in first order logic.

Two approaches to story generation are shown in this dissertation: the
first one (Chapter 4) uses the semantics that are linked to the concepts
that tokens define. The second one (Chapters 5 and 6) does not take this
into account. The way in which narrations are represented allows for both
uses of the information because it does not assume any semantic, therefore
allowing for its later inclusion.

3.3.2. Variables

It will be shown that the evaluation and the algorithm for extracting
structures for creating new stories both need variables to represent rules.
Variables in this proposed model are similar to logic variables, and they
can represent any token. Variables are denoted by a symbol followed by a
question mark. For instance, x? or token_variable? are valid representa-
tions of variables.
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Once a variable is bound to a token in an execution of the algorithm
(later described), every instance of that variable is bound to that token.
There is only one space for variables in the model, so every action contain-
ing the variable x? will have it replaced once it is bound.

Thus, the context, the generation or whatever other mechanism must
control the subset of tokens than can be used to bound every particular
variable. This formal model for computational definitions of narrations
does not address this because it has been created to be general enough to
cover all the cases studied in this dissertation. No explicit use for variables
is assumed so far, although the computational algorithms shown later will
formally define how variables are used.

3.3.3. Actions

Actions are basic constituents of narrations representing an event,
property or relation. Actions are defined by this event, property or relation
(from now on, the kernel) plus an ordered sequence of tokens. The action,
then, links a kernel with the tokens, meaning that the action, property or
relation is true for them.

A kernel is represented in the form of a single word, which can be
compound. For example love or take_to are kernels. Although this could
bring confusion because kernels are formed in the same way as atoms, in
practice this does not happen because kernels, in the rest of this model,
are always forming part of an action (as defined below). The structure of
actions formally specifies the kernel and the tokens.

Although they could be represented in many ways, this model repre-
sents actions as first-order logic-like predicates. The kernel in an action
takes the place of the property, and the elements take the place of the
atoms. Examples of actions are take(john, glass) or love(ofelia, x?), where
john, glass, ofelia are tokens and x? is a variable. Although no explicit
semantics are needed for the model so far, actions were defined in this way
to mean “John takes the glass” and “Ofelia loves something”, respectively.
This is because the definition of the formal definition for narrations has
been iteratively refined and adapted, therefore carrying information from
previous versions in which semantic meaning was tightly linked to actions.

The order in the sequence of tokens matters because the place they
have in the action determines their role in the action. For instance, the
first place is usually the subject that carried out the action. The particular
role that each position plays for each action is not fixed, so every action
must define this. This design decision has been taken to ease the definition
of new terms.
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Since this model of narrations does not take into account semantics, it
is not affected by the syntactical role of the tokens in the actions. The ap-
plication of the model is responsible to create a robust layout of positions.
The only restriction that the model presented in this chapter imposes is
that two actions are equal when the kernels are equal, the set of tokens
are equal, and the order in which the tokens are positioned in the action
is the same. This is why order matters in the model.

The examples show that the kernel of the action is tightly linked to the
idea of verb. This is not a coincidence. Like several other approaches
to knowledge representation in general [Schank and Abelson, 1977] and
computational narrative in particular, verbs are assigned a very important
role in the definition of narrations because they convey a very important
amount of information. While the model for narratives does not address
semantic properties, its development was partially linked to a semantic
processing of narrations. Therefore, its development generated this def-
inition. Since late development showed that the chosen approach was
empirically appropriate (as evidenced in Chapter 7), it was decided to keep
this formal representation.

According to the parameters linked to the kernel in the form of tokens
or variables, two types of actions are defined:

Ground actions are actions whose elements are tokens (take(john, glass)).

Pattern actions are actions in which at least one element is a variable
(love(ofelia, x?) or attack(x?, y?)).

The use of these structures in the proposed models for computational
processing of stories shown in Chapters 4, 5 and 6 justifies the creation of
these definitions.

3.4. Narrations

Narrations are ordered sequences of actions. They nave been defined
from the previously described parts (tokens, kernels and actions). Equa-
tion 3.1 shows a formal representation of a generic narration.

n = [a1, a2, a3, · · · , am] (3.1)

where [a1, a2, a3, · · · , am] is a list of ground actions and n is a narration.
For instance, [go(john, cinema), buy(john, popcorn), watch(john,movie),

eat(john, popcorn)] is a narration.
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Order is fundamental in narrations for this model. Although modern
forms of narration do not necessarily require sequential order, like hyper-
textual narrative [Joyce et al., 1989, Mancini, 2000, Bernstein, 2009], only
simple, linear narrations are addressed, following the restrictions shown
in Section 1.2. That is, a narration, as this model defines it, must be a
single chronologically ordered thread.

More concretely, simple stories are sequences of actions in which an
additional set of constraints is assumed. That is, the computational model
for processing simple narrations in this work must assume the next set of
constraints:

Time is divided in discrete units (t1, · · · , tn).

Time units are totally ordered.

Every action starts at a single unit of time s and ends at a posterior
unit of time e (e > s).

If an action ai is in the position i and aj is another action in the same
story in position the j, ai started before aj is i < j and vice-versa.

Intervals cannot overlap: an action a always starts after all the pre-
ceding actions have ended.

A single narrative thread is assumed. No parallel stories can be ex-
pressed in a single simple story, therefore any algorithm processing
this kind of narrations can safely assume that all actions are seman-
tically related as a single plot.

The existing relation between knowledge representation in computers
and time has been previously addressed in literature [Vilain et al., 1986,
Ladkin, 1987, Allen, 1991]. While extensive research has developed algo-
rithms for treating time as a logic entity and this could have been used
in this model to define a richer formal description of narrations, it has
been considered to be outside scope. In order to keep the research fo-
cused, time has been simplistically addressed by applying the restrictive
constraints previously explained. Nothing prevents, though, from improv-
ing the system as part of the future work (Chapter 9).

As an example, the formal Narration 1 shows a story without pattern
actions. A sequence in which some element was not an action, for instance,
would not be a valid story in the formal terms defined here. Chapter 7
shows other examples that have been used for experimentation.
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s =[carry(dog,meat),
cross(dog, river),

see(dog, the_shadow),
consider(dog, the_shadow, shadow),

attack(dog, the_shadow),
drop(dog,meat)]

Formal Story 1: Example of a formal narration.

3.5. Space of Stories

To define the set of stories, some working domain must be chosen.
Since stories represented according to the formalization shown in this
chapter will be the members of this set, the valid tokens and patterns
have to be selected. Also, the set of particular elements that will belong to
the set of stories for some domain depends on the maximum length allowed
for stories. It is assumed that the set of variables is unrestricted, that is,
there will be as many variables as needed to define all pattern actions.

Therefore, the set of stories S depends on:

δ, the set of tokens.

µ, the maximum number of actions per story.

π, the set of candidate pattern actions.

3.5.1. Size of the Space of Stories

According to these three parameters (δ, µ and π), the size of the set
of stories can be computed using Equation 3.2. Here, τ is the number of
possible ground actions. The value for τ is computed from δ and π.

The equation represents that the size of the set is the result of accumu-
lating the amount of stories from length 1 to length µ. The size of the set of
stories of length i is equivalent to the number of ground actions (computed
by the τ function) powered to the length of the story.

|Sδ,π,µ | =

µ∑
i=1

τ(δ, π)i (3.2)

where S , δ, π, µ are the variables defined in Section 3.5.
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The τ function is the number of ground actions in a domain defined by δ
and π. Since, a priori, there is no semantic restriction in the way in which
ground actions can be constructed, a pattern action can be instantiated
(turned to a ground action) with any token.

The τ function is therefore defined as shown in Equation 3.3.

τ(δ, π) =

πn∑
p=π0

|δ|arity(p) (3.3)

where arity(p) is the number of tokens or variables that a pattern can have,
and π0 and πn are the first and the last element from the π set. Therefore,
the sum traverses the whole π set.

That is, τ returns the number of all possible instantiations (|δ|arity(p)) for
all pattern actions in the domain.

The arity(p) function returns the size of the pattern regarding the num-
ber of tokens and variables that it allows. For instance, making the call
arity(love(x?, y?)) returns 2, making the call arity(give(x?, y?, z?)) returns
3 and arity(die(x?)) returns 1.

3.5.2. Subspaces of Good and Bad Narrations

The set S is partitioned into two disjoint subsets, G and B. The set
G corresponds to the “good” stories, that is, those stories whose quality is
acceptable. Complementary, the set B is the set of “bad” stories, or the
stories whose quality is not high enough. Any story must fall in either set.
The objective of any story generator which intends to generate good stories
is, therefore, to be able to generate only the whole G set. This task requires
a usable definition of quality, then. Chapters 4 and 5 show the definitions
that have been created for this dissertation.

It could be claimed that the partition of the whole space of stories is
more complex than a simple partition in “good” and “bad” stories. The
particularities of how to define quality for stories are partially addressed
in Chapters 4 and 5 from a computational perspective. By definition in
this research, a story can be “good” or “bad”, and there is no other set. In
a real scenario taking into account human criteria this is arguably more
complex. Section 8.1.5 addresses this issue in detail.

While this is arguably an over-simplification of the problem, it has been
applied in order to keep the models easily implementable and clearer (see
Chapters 5 and 7). The author is well aware that human behaviour is
much more complex. However, this simplification is considered to be a
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good option for the presented prototype, since only coherence (and not
levels of coherence) is addressed in the current research.

3.6. Chapter Summary

This chapter has introduced a formal definition of simple narrations.
This definition will be used from now on as the formal base for creating the
Computational Narrative system devoted to story generation. The space of
possible stories that is created by this definition is presented and studied,
and the cognitive and psychological aspects of the proposed formalism are
discussed.



Chapter 4

Story Generation Based on
Semantic Knowledge

The first approach to improve the amount of generated stories while re-
ducing the cost of adding new domain dependent knowledge was the

creation of a story generation system based on an evaluation function that,
given any story inside some predefined domain, could rate the quality of
the story and thus differentiate “good” and “bad” stories.

The main underlying hypothesis at this stage of the research was that
the definition of an explicit evaluation function which takes into account
narrative and psychological aspects of the narrative act could help to better
define a generative process in a more general form, thus creating a model
that could be used in general for story generation. In particular, such
a function could drive a classic state space search to find “good” stories
according to that function.

This system was modelled and implemented as shown in this chapter.
Many of the ideas and concepts introduced here set the base for a posterior
development of a system that tries to avoid the main drawbacks that were
found during the creation of the version of the story generator detailed
now.

The formal definition of narrations shown in Chapter 3 was created
as part of the work developed in this stage of the research. It has been
described in a separate chapter because the concepts that were introduced
there are valid both for this chapter, detailing the first version, and for the
rest of the dissertation that develops the final proposed model.

This chapter, as it will be detailed, proposes a system based on semantic
approaches to perform story generation. While the results were promising,
it was evidenced that improving the generation capabilities was difficult
due to the system’s strong dependence on domain rules. A more detailed
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definition of the content of this chapter in the context of Computational
Creativity can be found in [León and Gervás, 2010].

To offer a solution for this issue, the research led to the creation of
a system that pseudo-automatically extracts structural information from
narrations, explained in Chapter 5. Since the research based on semantic
processing was the origin of that system, it is explained here to document
the carried out research.

4.1. Towards a Story Generation System based
on Evaluation

In order to perform story generation in the large, it was hypothesized
that generating a big set of stories containing both good and bad ones
and then choosing those that could be automatically rated as good could
improve the amount of stories that the system could generate.

The set of all possible stories U contains all possible artifacts that can
be considered a story by a human reader. It is possible to create a new story
in this set by adding a new action to a previously created story, so the U
set is infinite and therefore it is not possible to fully explore it in finite time.
Therefore, we want to restrict the exploration in our model to a particular
subset of stories, so it is necessary to define the C set inside U . This
space is restricted by a rule-set R, in such a way that it only contains the
computationally valid stories in which we are interested. This R rule-set
applies the definition of narrations explained in Chapter 3. Additionally,
the C is constrained with domain rules. The set with domain restrictions,
Cd, contains both high-rated, low-rated and meaningless stories according
to human criteria.

4.2. Evaluation Function

A function capable of selecting the high-valued stories from among the
rest, at least to some extent, is required to identify those elements belong-
ing to the C set that are certainly “good”. Equation 4.1 describes the story
evaluation function, E, which ranges over the domain of stories in the Cd set
and returns a real value in the range [−1,+1], −1 representing extremely
poor quality and +1 representing a very good story.

E : Cd −→ R[−1,+1] (4.1)
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The function iterates over the sequence of messages in a story in order,
processing their constituent actions. The value for this function is com-
puted from values assigned to a set of significant variables. These values
are of three types, corresponding to three different aspects of a story that
need to be taken into account: accumulation of contributions, appearance
of patterns and inference, as explained next.

A number of variables that take values based on accumulation of con-
tributions from individual action depending on the meaning of the action.
It is very important to make clear that this set of variables is by no means
a model of human understanding of narrations, and they do not intention-
ally represent or match any psychological model. They were just chosen as
a test set in order to define a computational function, and the selection was
only driven by the author’s intuition. Therefore, no claim is made about
the psychological plausibility of the next list:

Interest models the intention of the reader to continue reading the
story.

Danger represents how much danger the reader perceives in the
story. When a character is about to die, the danger variable is raised.

Love measures the amount of love in the story that the reader per-
ceives. All kinds of love are covered by this variable: romantic love,
friendship, and so on. For instance, when a character kisses another
character the value of the love variable is increased.

Tension captures the sense that an important event is to come in the
story.

Humanity is raised when human behaviour is clearly present in the
story and characters’ reactions are human-alike.

Action represents the amount of change and movement that the story
contains. Events involving some kind of action (moving, talking...)
raise the action variable, whereas descriptive actions (position, feel-
ings) do not.

Empathy models the development of empathy (positive or negative)
towards characters. For instance, if some character kills another
character, the empathy towards the murderer is lowered.

Emotion represents the perception of emotive actions a heroic fact,
fear and other events related with human emotions.



70 CHAPTER 4. GENERATION BASED ON SEMANTIC KNOWLEDGE

Some variables measure the appearance of particular patterns or rela-
tionships between the actions of a story:

Causality measures the number of causality links. If the cause for
an action is found, the causality is raised.

Funny measures how funny the story is, based on the occurrence of
specific templates.

Chronology measures, according to some basic rules, the correctness
of the time order of facts in the story.

To model the way humans react to stories, the evaluation function must
model the ability people have for “interpreting” stories by adding hypothe-
ses, causes and explanations for what they are told even if those are not
explicitly present in the story (some recent work studies these aspects of
storytelling [Niehaus and Young, 2009]). To capture the effect of these op-
erations on the overall rating, some variables operate over the number of
facts that have been inferred or hypothesized during interpretation (which
is computed by ad-hoc, domain dependent rules):

Compression is defined as the ratio between the number of actions
that the reader infers and the number of actions that story explicitly
includes.

Hypotheses measures the amount of knowledge that the reader hy-
pothesizes when she reads the story. The hypotheses variable mea-
sures how many hypotheses have been made.

The final rating for the E is a linear combination of these variables.
Although several ways of combining these values are possible, the un-
weighted mean value is used as the overall rating. While being a rather
simple approach, the empirical tests show good results using this ap-
proach. Other combinations could yield different values that are better
fitted to human evaluation following the comparison in Section 4.3.

This set of variables is by no means exhaustive. One can think of
several other plausibly valid variables, like surprise. The objective is not to
create a full model, but to study the use of evaluation in story generation.
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4.2.1. Implementation of the Evaluation Function

The evaluation function has been implemented as a rule based system.
Domain specific rules have been encoded in an independent module in
such a way that the general evaluation engine can be kept general enough
to allow changes of domain at a later stage.

The E function is a knowledge intensive rule-based function that re-
ceives stories and iteratively processes them to compute a rating value.
Thus, the evaluation function sequentially processes every action, just
as a reader would do with written text. Although several psychological
models and identification of variables regarding its influence on percep-
tion of narrative are available [Graesser et al., 1994, Weyhrauch, 1997,
Mateas and Stern, 2005], none has been used. Only ad-hoc rules have
been created for this prototype, so no psychological plausibility is claimed.

The evaluation function relies on a context Γ which stores the partial
information state accumulated by a hypothetical reader as the processing
evolves. This state includes a partial assignment for evaluation variables.

A rule has preconditions (that must be satisfied by the current context
for the rule to be applicable) and postconditions that define the changes
that should be applied to the current context to obtain the context after
processing the action under consideration.

The process function searches in the rule base for rules whose precon-
ditions match Γi and ei. The effects of these rules create a new context
which is returned by the process function, in this way updating the state
of the evaluation. Equation 4.2 shows this relation:

Γi+1 = process(Γi , ei) (4.2)

where Γi+1 and Γi are the next and current contexts respectively, ei , is
the action being processed and process is the function that chooses which
rules to apply and applies them.

For creating rules, the authors’ intuition has been applied, with spe-
cial focus on effectiveness of the rules for the working domain. The main
objective for rules in the current prototype has been to demonstrate that
such an evaluation function, at least for simple narrative, is possible.

The presented prototype has 73 rules. Each rule is only applicable to
one type of action. In the rule set there are rules for actions with the go
kernel, for the take kernel, and so on. This means that the kernel in the
action is the base when creating rules in the current prototype. Some
example rules (translated to natural language) are shown in Table 4.1.

Not every rule is applied for every story. Only those rules whose precon-
ditions are satisfied by the context are used, and the order of application
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Context Event Variable changes
x? has to pay money
to y? and x? did not

pay to y? and y? is in
p?

x? goes to p? raise danger and
raise humanity and

raise action

x? and y? are not
friends

x? asks y? for help raise humanity and
raise tension

z? is the boss of x?
and z? hates y?

x? kills y? raise humanity and
raise danger

Table 4.1: Example of evaluation rules.

is not important because the definition of rules only takes into account
the story so far, not the partial results from other rules at previous stages
stage.

The main flaw of this design is that the creation of the rules by hand
is costly and the rule-set cannot be easily updated without an extra ef-
fort to keep consistence on the knowledge base. This is a typical prob-
lem of rule-based systems, and it affects storytelling systems like Brutus
[Bringsjord and Ferrucci, 1999]. Next chapters in this dissertation address
this issue.

4.3. Validation of the Evaluation Function us-
ing Human Judgment

It is necessary to validate the current model, at least to demonstrate
that the task of modeling story evaluation is worth exploring. For this
task, 10 stories generated by the exhaustive conceptual space exploration
approach (as explained in Section 4.4) were issued to human evaluators
(the set of evaluators is detailed later) and they were asked to order them
by quality. Seven stories out of 10 were picked from those which the
evaluation system rated as “good” (1, 3, 4, 5, 6, 8 and 9) and three from
the set rated as “bad” (2, 7 and 10). The selection has not been totally
random. Instead, the focus has been put on getting a sample of different
stories with a broad range of values from the evaluation function.

Eleven evaluators are male and eight are female, all Spanish. Their ages
ranges between 24 and 59 years old and none of them are native English
speakers, although all of them consider to have a high level of reading com-
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1 2 3 4 5 6 7 8 9 10
Interest 0.6 -0.3 0.24 0.5 0.3 0.24 0.07 0.07 0.7 -0.2

Causality 0.6 0.3 0.7 0.9 0.5 0.2 -0.1 0.2 0.2 0
Compression 0.7 0.4 0.7 0.6 0.3 0.2 -0.1 0.3 0.4 -0.2

Danger 0.9 -0.2 0.7 0.6 0.5 0.6 0.8 0.6 0.9 0.8
Love -0.3 -0.6 -0.1 0.5 0.1 -0.2 -0.3 -0.2 -0.1 -0.2

Tension 0.4 -0.2 0.3 0.4 0.4 0.4 0.2 0.02 0.3 0.2
Humanity 0.4 -0.3 0.2 0.64 0.5 0.4 -0.0 0.3 0.5 0.2

Action 0.4 -0.1 0.3 0.6 0.3 0.4 0.5 0.2 0.7 0.5
Hypotheses 0.3 0 -0.3 0.2 0.6 0.2 -0.2 0.2 0.3 0.5
Empathy 0.2 -0.6 0.1 0.3 0.2 -0.2 -0.2 -0.3 0.16 -0.1

Funny -0.1 -0.4 -0.4 -0.3 -0.4 -0.4 -0.3 -0.4 -0.7 -0.5
Emotion 0.2 -0.6 -0.1 0.2 0.1 -0.2 -0.1 -0.1 0.24 -0.1

Chronology 0.8 0.5 0.6 0.8 0.6 0.4 0.3 0.7 0.9 0
Over.
rating

0.6 -0.3 0.2 0.4 0.1 0.2 -0.2 0.2 0.6 0

Table 4.2: Mean values for human evaluation of the set of stories.

prehension in English. Fourteen have graduate or post-graduate academic
studies. None have any specialization in narrative.

Human judgements have been compared to the ordering that the eval-
uation function puts on the stories. The evaluation function creates this
quality order by assigning a value to each story and then ordering stories
accordingly. Stories used for the validation are shown in Figure 4.1.

It is important to note that, since these stories have been randomly
generated, some of them do not conform to the definition of simple narra-
tions, as defined in Chapter 3. Humans, however, do not take this into
account when evaluating the previously detailed variables. This leads to a
certain amount of divergence between the intended model and the obtained
results. However, this is considered to have only a small influence on the
overall conclusions because the rules just ignore those patterns which do
not match the definition of simple narrations. Thus, the value for the
corresponding variables will be adjusted to what the rules can process.

Human evaluators are asked for a rating in the integer range [1,5] for
every evaluation variable presented in Section 4.2. That interval has been
chosen in order to use positive integer values instead of real numbers,
which has been considered to be simpler for evaluators.

These human evaluation values have been normalized to match the
range [−1,+1]. Additionally, the opinion about the overall value has been
gathered, in the same range. Nineteen people have been queried. Table
4.2 shows the mean gathered values.

Table 4.3 shows the values computed by the implementation of the eval-
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1. John was in the bus stop. A man was in the bus stop. John realized that it was late. He was surprised.
John asked the time to the man, and he said that it was two o’clock. John supposed that he was going
to die. Some time before, John had agreed with a godfather that he would pay him some money before
2 o’clock. John wanted to ask for help to the man in the bus stop. The man in the bus stop, then, said
that it was too late, and he killed John.

2. John was in the bus stop. John went to the warehouse. John gave some money to a man. The godfather
was the boss of the man. The man gave the money to the godfather. The godfather said to the man that
John had to pay him that money. The guy said goodbye to John. John said goodbye to the man.

3. The godfather hated a man. The godfather was the boss of the man. The man was a friend of John.
The godfather was the boss of John. John was the friend of the man. The godfather told John to kill
the man. John killed the man. John was sad.

4. The godfather was sad. The man killed John some time before. The godfather desired John to be alive.
The godfather told the man that he hated him. The man loved the godfather. The man was sad. The
man killed himself.

5. The man desired that John was in the bus stop. The man was in the bus stop. The godfather told the
man to kill John some time before. The man was afraid. The man wanted to escape. The man supposed
that the godfather would get angry. The man escaped.

6. The man was angry. John was angry. The godfather told the man that he would pay him some money
some time before. The godfather told John that he would pay him some money some time before. John
supposed that the man would kill the godfather. John found the godfather. The godfather was dead.
The man supposed that John had killed the godfather.

7. John took the gun. John was friend of the godfather. The godfather was friend of the man. The man
was friend of John. The man had some money. The man gave some money to John. John gave some
money to the godfather. The godfather gave some money to the man. John killed the man.

8. The godfather was surprised. The man had killed John before. The man told the godfather that it was
late. The godfather told the man that it was 2 o’clock. The godfather took the money. The godfather
gave the money to the man. The man was happy.

9. John was in the bus stop. The godfather was in the bus stop. The man was in the bus stop. John
realized that the godfather took the gun. The man realized that the godfather took the gun. The
godfather killed John. The godfather killed the man. The godfather killed himself.

10. John was angry. The godfather realized that the man was in the bus stop. The godfather told John that
he supposed that it was late. The man took the gun. The man went to the warehouse. The man killed
John. The man was surprised. The godfather told the man that he had killed John. The godfather was
happy.

Figure 4.1: Stories used for validation. They have been generated using the
algorithm explained in Section 4.4. They have been translated to natural
language using simple templates and the text in some sentences has been
corrected by hand.
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1 2 3 4 5 6 7 8 9 10
Interest 0.8 -0.2 0.2 0.6 0.2 0.2 -0.2 0.2 0.6 -0.6

Causality 1 -0.2 1 1 0.8 0.6 -0.2 0.2 0.4 -0.3
Compression 1 -0.6 1 1 0.8 0.7 -0.4 0.6 0.6 -0.5

Danger 1 -0.2 1 0.6 0.6 0.6 -0.4 0.6 1 0
Love -0.2 -0.6 0.6 0.2 0.2 0 -0.2 -0.2 0.2 -0.5

Tension 0.6 -0.2 -0.2 0.6 0.4 0 -0.6 -0.2 0.9 -0.3
Humanity 0.9 -0.6 0.6 0.6 0.6 0.6 -0.2 0.2 0.4 -0.4

Action 0.2 -0.4 0.2 0.6 0.1 0.2 -0.2 0.2 0.6 -0.5
Hypotheses 1 0.6 -0.2 0.2 0.8 0.8 -0.2 0.6 0.2 -0.8
Empathy 0.8 -0.6 0.6 0.6 0.4 -0.2 -0.2 0.2 0.6 -0.7

Funny 0 -0.6 -0.4 -0.6 -0.5 -0.4 -0.6 -0.6 -0.2 -0.6
Emotion 0.2 -0.6 -0.1 0.2 0.1 0.1 -0.2 0.3 0.4 -0.7

Chronology 1 -0.2 1 1 1 1 -0.4 1 0.9 -0.7
Over.
rating

0.6 -0.3 0.4 0.5 0.4 0.3 -0.3 0.2 0.5 -0.5

Table 4.3: Values computed by evaluation function for the set of stories.

uation function. The overall rating is the mean value of all the variables.
Figure 4.2 shows the comparison between the overall value computed

by the implementation of the evaluation function for the test stories against
the overall value gathered from humans. A very nice fitting can be seen
between rating in human evaluation and the implementation. The mean
quadratic error between the two sets of values is 6.21%. On the other
hand, a perfect fitting would be difficult to interpret as strong validation
of the evaluation function: there are so many aspects in story evaluation,
and there are so many possible interpretations, that there is not a correct
solution. Therefore, a “nice” fitting of the evaluation function output values
is, in general, useful enough.

To show more specific results, the next list includes the Pearson’ cor-
relation coefficient between human and machine results for every variable
in the executed experiment, which show a clear correlation:

Interest: 0.91.

Causality: 0.88.

Compression: 0.75.

Danger: 0.5.

Love: 0.67.

Tension: 0.59.
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Figure 4.2: Mean global quality variable against evaluation function.

Humanity: 0.79.

Action: 0.52.

Hypothesis: 0.24.

Empathy: 0.78.

Funny: 0.74.

Emotion 0.72.

Chronology: 0.8.

Causality: 0.74.

Overall quality: 0.9.

This result suggests that the implementation and the selection of the
variables is promising for simple stories as those we present.

There is a big deviation for story 10. The automatic evaluation system
rates that story as a very bad one, whereas human do not set such a low
value. This is because story 10 is meaningless for the current implemen-
tation of the evaluation function and humans tend to create meaning in
a more powerful way. This case shows that a more detailed study of how
humans assign meaning to stories must be made in order to add coverage
for more complex stories in the evaluation function.
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4.4. Exhaustive Exploration of the Space of Sto-
ries for Generation

A simple generate and test approach, using Prolog in the implementa-
tion, has been used to perform an exhaustive exploration of the Cd set of
stories. The generation iteratively constructs the Cd set, and every created
story is evaluated with the implementation of the E function.

The implementation consists on a simple generative approach based
on an incremental strategy: a story with a single action is generated and
evaluated, then a new story with that action and an additional one is
generated, and so on. This is done for every combination of actions and
tokens (characters, places, etcetera), and considering the maximum length
of stories (defined in Equation 3.2).

The order in which actions are generated depends on the order in which
action generation rules are ordered in the Prolog program. Events are in-
stances of basic actions (the set of possible actions in the current prototype
is described in Equation 3.2). Tokens for are taken from the δ set. The
generation of messages is carried out incrementally by building messages
for all available actions.

Stories can be created based on the way actions are generated. First,
all stories with one message are sequentially created. This means that the
system will generate one story per different possible message. Then, the
process is repeated for all possible stories of length 2, and so on until the
number of messages reaches ϕ.

Two sets are created during generation: the set of good stories and the
set of discarded stories. Stories are classified into one or the other based on
the results of the evaluation function E described in Section 4.2.1. A user
given threshold τ is used to include stories in one set or another. Those
stories whose rating falls above τ are good, and the rest are considered bad
and they are included in the set of discarded stories.

The implemented prototype has 3 terminals for different characters, 2
different locations, 2 objects and 26 different types of actions. Therefore,
it can generate 473,979 different actions. This number is obviously de-
pendent on the number and the type of parameters of the action. For a
maximum depth of 10 actions per story, according to Equation 4.3, the
conceptual space Cd has a size of:

|Cd | =

δ∑
i=1

µi =

10∑
i=1

473,979i = 5.7226 · 1056 different stories (4.3)
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4.4.1. Results of the Exhaustive Exploration Approach

A threshold τ of 0.01 has been used. The execution was run in a single
core Intel Centrino 2.16 GHz computer with 3GB of RAM memory using
SWI Prolog version 5.7.15 [Wielemaker, 2010] on a Windows 7 machine.

After 4 hours and 25 minutes (99% of processing time for the gener-
ation) the execution was manually stopped. In total, 15,932,143 stories
had been created and evaluated. Only 4,234 stories received a rating over
the threshold (0.01), which means a rate of only 2 good stories in every
10,000 generated stories. Not every story rated as good by the implemen-
tation was high-valued according to humans and many discarded stories
were probably high-valued. As checking several million stories by hand is
quite a difficult task, only a random sample has been picked from the set
of good stories to check that the stories are, at least, meaningful. “Bad”
stories in the discarded set are also checked, and most elements of the
“bad” set were found to be meaningless. A subset of this sample and some
stories in the discarded set were chosen as the test set for the evaluation
function explained in Section 4.3.

From the set of good stories, the mean overall quality value was 0.14.
The best story received a rating of 0.64:

John was in the bus stop. A man was in the bus stop. John
realized that it was late. He was surprised. John asked the time
to the man, and he said that it was two o’clock. John supposed
that he was going to die. Some time before, John had agreed
with a godfather that he would pay him some money before 2
o’clock. John wanted to ask for help to the man in the bus stop.
The man in the bus stop, then, said that it was too late, and he
killed John.

Only 319 stories received a rating over 0.25 (7.53% of stories). It is
possible to state that (approximately) this should be the set of stories that
are not only meaningful but also high-valued to some extent, although
checking all these stories and evaluating them using human criteria would
be needed.

4.5. Improving Conceptual Space Exploration
by Constraining

The previous section showed that the amount of stories that the system
can generate is so high that practical generation is unmanageable. In this
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context, it makes sense to constrain the bounds of the conceptual space
so that the number of generated stories becomes smaller. The previous
section showed that 99,97% of stories were discarded. Considering that
the required time for generating any story is approximately equal, a large
percentage of total computing time was spent on incorrect stories. Also,
humans do not achieve creativity by trying all possible alternatives and
then choosing the most appropriate one.

These two aspects of the exhaustive generation approach have led to
the modification of the basic generation system to include the possibility
of a pruning function, P. The second version of the prototype includes
a domain dependent function that returns a boolean value: if it returns
true, the current branch in the generation is explored. Otherwise, the
generation stops at that point for the current branch, making the algorithm
try a different option.

Although the current prototype permits any implementation of this
pruning function, we want to explore the possibility of basing this prun-
ing on the evaluation function that has been defined in Section 4.2. The
definition of this pruning can be formally represented by Equation 4.4:

P(s) = E (s) > τ (4.4)

where τ is any real parameter in the range [−1,1], as defined in Section
4.4.

4.5.1. Adapting the Evaluation Function for Use as a Prun-
ing Function

To adapt the evaluation function so that it can be used as a prun-
ing function, an iterative modification based on the exhaustive generation
approach results has been carried out. The overall point is to adapt the
evaluation function in such a way that it detects unfinished stories, and
treats them so that an adapted procedure can be applied to them.

If a partial story is evaluated as if it was a complete story, the overall
rating it is likely to be quite low. If it was discarded before completion, the
system would be discarding a potentially high-valued story. The basic E
function must be adapted so that it considers partial stories in a different
way.

This is done by providing a set of additional rules. New rules have the
same format as those described in Section 4.2.1, but they are designed so
that they avoid low rating of partial stories when extensions of the story
may achieve high ratings. If the story rates as an unfinished story above
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a user given threshold, the partial story is considered to be promising and
it is extended. Otherwise, the story is considered not promising and it is
discarded.

The definition of the rules is based on experimental results. The process
of creating good rules for constraining the search in the conceptual space
takes four steps:

1. Using the current E function (the function which does not take into
account partial stories) a sample of stories L is generated. The size
of this sample is kept small so it can be checked manually.

2. Using the Ep function (the function which does take into account
partial stories) the generation is repeated, getting the L ′ set (in less
time).

3. Checking the generated logs from the execution in step 2 in compar-
ison with those in step 1, those non-promising stories (according to
Ep) that yielded good stories (according to E) are identified as the θ
set.

4. Each rule in Ep is adapted so that it accepts the stories in θ as
promising. This process involves several evaluations of every element
in θ, trying new rules and testing them so that the evaluation fits the
authors’ criteria.

Steps 2–4 are repeated until L = L
′. When this happens, a different

sample set is chosen for generation.

4.5.2. Results of the Constrained Conceptual Space Ex-
ploration Approach

To compare both approaches (exhaustive exploration and constrained
exploration), the constrained version was run to generate exactly the same
number of good stories than in the previous experiment, 4,234. Using
the same machine, the generation took 53 minutes. The obtained set
of stories, however, was not the same, so the application of the pruning
function does not only affect time, but also the output set itself in terms
of Wiggins’ formalism. This suggests that the same T combined with a
different E leads to a different set of points within the conceptual space.

Using constraints in this way, the mean value for stories rose to 0.22,
and 814 stories received an evaluation greater or equal to 0.25. That is,
19.22% were “good” stories. Again, this should be proved by checking the
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real quality in stories. However, the maximum value was 0.60, which is
slightly lower. It corresponds to the story presented below. It is quite
similar to the best story in the exhaustive exploration presented in Section
4.4.1:

John realized that it was late. John was in the bus stop. He
was surprised. John asked the time to the man, and he said
that it was two o’clock. John supposed that he was going to
die. Some time before, John had agreed with a godfather that
he would pay him some money. John wanted to ask the man
in the bus stop for help. The man in the bus stop killed John.

These results show that constraining the conceptual space search saves
time and discards non-promising stories.

4.6. Benefits and Drawbacks of the Semantical
Approach

As advanced in the introduction, this study served, among other things,
to check that semantic approaches to narrative generation are useful, but
the cost of improving the knowledge base is too high for the system to be
really maintainable in production scenarios. While this was known before
the system was built, the hypothesis that an explicit evaluation function
could serve to reduce the required cost was not validated.

While the results showed promising results, and in-depth analysis of
the system detailed in this chapter reveals that the rules are too ad-hoc.
The author was responsible of programming them, and, although not in-
tentionally, the definition of the characteristics of a “good” narration and
the output of the rules were too coupled and tweaked to yield satisfactory
results.

In a more general approach where the definition of a “good” story and
the creation of the rules were totally independent, the results would not
be so good. Therefore, although defining the model and the rules by hand
offers full control on the specific behaviour of the system, the amount of
knowledge that a human can insert into a computational system is so
limited that the effort is usually not valid for a broad range of domains.
This is considered a typical drawback of knowledge intensive systems, and
it could not be solved by the creation of the evaluation function previously
described.
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Figure 4.3: Graphical representation of the causality, time-correctness and
overall quality (human evaluation).

As conclusion for this chapter, then, it can be said that the experience of
building a knowledge based story generation system helped not to clearly
identify the bottleneck that rule creation presents (which was known a
priori), but to hypothesize that a different approach could be tested. When
creating the variables, the definition suggested non-semantic aspects of
the properties of a good narration, in the sense of the lack of external
knowledge to handle it. It was hypothesized that some structural aspects
could be computationally managed, which has been done, as explained in
Chapter 5.

Also, the explicit evaluation function has been kept, but it was strongly
modified so that it only captures structural patterns of simple stories, as
it will be shown in next chapter.

4.6.1. Influential Variables

As Herman studies, there is an existent correlation between causality,
chronology and overall quality [Herman, 2000]. This can be graphically de-
picted as shown in Figure 4.3, where a slight correlation can be perceived.
Moreover, there is a strong agreement on the human evaluation of these
aspects of narrations.

The Pearson’s correlation coefficient between chronology and mean
quality in humans is 0.67, and between causality and mean quality it
is 0.6. This suggests that there is a correlation between these variables.
These results will be used in next chapter as inspiration for the creation of
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a structural pattern, as it will be explained.

4.7. Chapter Summary

This chapter has presented the first stage of the research, namely a
computational approach to story generation based on a knowledge in-
tensive evaluation function. While the results were positive, it has been
made clear that the knowledge acquisition bottleneck is still totally present,
therefore being necessary to build a different approach. The main results
from the execution of the experiments suggest some ideas that form the
base for the next chapter.
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Chapter 5

Structural Processing of Stories

This chapter explains an artificial structural relation in narrations that
is used as a basic relation to process stories in this model. This rela-

tion has been called preconditional-link, and next sections explain its main
characteristics. The creation of a simple relation allows to computation-
ally analyse structural characteristics of stories and build an algorithm
that extracts rules for preconditional links, the so called preconditional
rules (Chapter 6).

This relation has been synthetically defined from observation of in-
stances of simple stories, as defined in Section 3.4. Thus, no cogni-
tive model is proposed. Instead, obtaining satisfactory practical results
through empirical measurements is the objective.

The preconditional link, as it will be later shown, is just a structural
property that helps to analyse and build simple stories (Section 3.4). This
kind of structural relation is valid for the restricted type of narrative pre-
sented in this research, processing more complex stories by these means
will probably lead to incorrect results according to human criteria about
the coherence of the generated stories. Advanced forms of narrations are
not addressed.

The proposed structural relation, then, is presented with the intention
of proving that structural analysis of narrative makes sense. While more
extensive work is needed for the approach to be generally applicable (as
addressed in Chapter 9), preliminary results suggest that this way of pro-
cessing narrations is promising. In this way, the intended contribution is
to show that classic semantic approaches can be complemented (and not
substituted) with structural processing.

85
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5.1. From a Cognitive Model to a Structural Def-
inition

The system introduced in Chapter 4 made explicit several flaws inher-
ently linked to the semantic processing of stories. These flaws constrained
the development capabilities of the implementation due the fact that up-
dating and broadening the domain information is very costly.

As explained in Chapter 2, Schank introduced the concept of script
as a basic mental structure for memorizing in humans. This scripts are
basically sets of typical actions or short stories which occur frequently.
Schank and Abelson stated that this subtype of cognitive schema is basic
in human knowledge [Schank and Abelson, 1977].

This sequential property of scripts led the author to hypothesize that
structural properties of scripts or narrations can be used in a more useful
way by computers. Putting together experience and theory, the system
based on semantic processing, despite of its inherent limitations, sug-
gested a possible change of focus. The ad-hoc definition of the variables for
evaluation yielded promising empirical results, even being domain-specific.
And the evaluative nature of the solution offered explicit analysis of cer-
tain features of narrations, some of them involving structural aspects of
stories. Since the definition of the features, while cognitive, just modelled
an approximation to evaluation of stories, the study of the system led to
the hypothesis that empirical rules of thumb about properties of narrative
could permit the processing of narratives.

That is, it was hypothesized that just by taking into account structural
properties of formalized story plots, stories understandable by humans as
such could be generated, as introduced in Section 1.3.

There was a clear correlation between causality, chronology and overall
quality: stories receiving ratings for causality and chronology above zero
also received rates for overall quality above zero. Zero was set as the
threshold between acceptable and non-acceptable stories.

This has been previously identified in literature as a common psycho-
logical process when humans understand narrative [Herman, 2000], so it
was considered that correctness could be indirectly modelled by replicat-
ing these kinds of understanding processes. But modelling causality and
chronology requires handling massive amounts of semantic knowledge, as
evidenced in Chapter 4 and other previous research.

At this point, a synthetic relation was defined, not based on any cog-
nitive aspect. Instead, it was only inspired by them. The intention was
to discover patterns ensuring coherent causality and chronology. These
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patterns had to remain totally structural, that is, they did not have to rely
on any additional knowledge base. As Herman states [Herman, 2000],

People do seem to rely on a story-based rule of thumb when
they bind strings of successively occurring events into causal
and chronological wholes-e.g., I am out in a storm with a group
of my peers and only I am struck by lightning; therefore I have
earned the ire of the gods or, in another story, I in particular
have been brought low by the turning of Fortuna’s wheel.

Therefore, successive events in a story capture some amount of in-
formation, and this is a structural characteristic. Additionally, Trabasso
suggests a graphical representation of causality in which events in a story
are represented by nodes and causality is represented by arcs between
those nodes [Trabasso and Sperry, 1985]. This kind of representation has
been followed by others [van den Broek, 1988, Riedl, 2004]. In particular,
Riedl suggests that story coherence, as opposed to plot coherence, requires
that all elements in the graph (all actions in the narration) must be part of
a causal chain leading to the outcome of the story [Riedl, 2004].

Based on this ideas, a heuristic was created to capture this: the precon-
ditional link. Preconditional links try to describe the structural patterns
in narrations that are involved in the human recognition of causality and
chronology, ignoring the semantic content of these two concepts.

Next section (Section 5.2) details the model of coherence based on struc-
tural patterns of stories and Section 5.3 introduces the preconditional link
relation, whose definition is based on this structural approach to narrative
coherence.

5.2. Structural Properties as Structural Coher-
ence

In order to correctly create a formal definition for preconditional links
able to determine which stories are “good” and which are not (regarding
coherence), the characteristics of “good” stories as complete units were
studied, and then, the preconditional link was defined based on the defi-
nition of structural coherence.

Experimentation with variables shown in Section 4.2 led to the con-
clusion that, while the approach was promising (“good” stories could be
generated), it was difficult to build a robust model of every variable. It is
not claimed that modelling quality in that way is impossible, this research
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only estimates that such a model requires a long term scientific investiga-
tion because the currently available technology is unable to fully automate
knowledge acquisition in computers. Therefore, conclusions from this pre-
vious work about the way in which narrative quality could be computa-
tionally figured out were used to narrow down the scope.

It was decided that the common aspect of “good” quality is the coher-
ence. Narrative coherence is defined for this research as the property as
being recognizable as a narration by humans. While this is admittedly
a conflicting definition –human criteria on this field is too variable to be
formally used without adaptation–, it is used as the conceptual base for a
formalization. That is, instead of looking for the generation of really good
stories, the scope of the research was narrowed down to a more restricted
objective. It is assumed that every good story is, at least, coherent (dis-
cussed in Section 8.1.3), so it is therefore concluded that any advance on
achieving coherence in story processing is useful as a step towards the
goal of narrative quality in computational generation of stories.

This assumption is not new in the field. Previous literature on formal or
computational approaches to narrative assume that a narration is recog-
nizable as such if it is coherent [Trabasso and Sperry, 1985, Riedl, 2004,
Pérez y Pérez et al., 2007, Chambers and Jurafsky, 2008]. The meaning
of coherence, although addressed from different perspectives and with
slightly different definitions, conveys the idea that everything occurs for
a logic reason and there is some kind of conclusion in the story. As an
approximate summary of the ideas regarding this concept, coherence in
Narratology and conceptual approaches to computational narrative define
a coherent narration as a narration in which everything occurs for a logic
reason according to the rules governing the domain in which the action
occurs and there is an ending, outcome or solution for that narration.

However, the proposed approach in this work does not try to match any
cognitive model. The proposal consists on shifting from purely cognitive to
mostly structural approaches, and consequently coherence in narrations
is defined in these terms, without any cognitive assumptions, as state next:

A story is coherent in the proposed model if it is rated as
such by human evaluators.

That is, the problem is passed to humans, and thus empirical demon-
stration of the capabilities of this computational system will have to be
tested against human criteria. While this definition could seem circular, it
is not. For instance, Wiggins proposed an analogous definition for Compu-
tational Creativity [Wiggins, 2006]. Therefore, if common human criteria
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in empirical evaluation rates a computationally generated story as coher-
ent, it will be considered that the generation program has been successful
in these terms.

However, the previous definition about coherence is only useful as eval-
uation criteria: since no cognitive model is assumed in that definition, it
does not help to generate stories efficiently. By assuming only that defini-
tion of coherence, one could only generate candidate stories and feed an
evaluation system based on human judgements. This would be obviously
impracticable.

In order to avoid that, an additional definition is created. This is the
definition of structural coherence:

A story is structural-coherent if three structural patterns are
present in it: focus, unique linkage and full connection.

Focus, unique linkage and full connection are later defined. These have
not been explained first because its definition is linked with the notion
of preconditional links. The lack of cognitive base has lead to a defini-
tion of these properties in terms of the preconditional link, which is later
explained.

It will be seen how the definition is circular: preconditional links are
defined in terms of focus, unique linkage and full connection, and vice-
versa. This definition is not useful by itself, then, but it will be shown,
in next chapter, how the definition is useful when running the algorithm
for extracting patterns because only preconditional links appropriate for
an input corpus of coherent stories is accepted (Chapter 6). On the other
hand, the definition could have been given in terms of graph-properties of
the stories, which would have broken the circularity in the definition. It
has been considered that the chosen way is more intuitive, and thus, more
appropriate.

It is again emphasized that only simple narrative is addressed: surreal
novels, for instance, are not covered by this definition (since surrealism, by
definition, does not follow the domain rules governing the world in which
the action occurs). Therefore, only the kind of stories fulfilling this require-
ment can be processed by the proposed model. The structural approach to
story processing is only valid, according to the focus of this research, for
simple narrations. No further assumptions are made about more complex
stories.

A formal definition of structural coherence for a story s is shown in
Equation 5.1. The implementation (Chapter 7) is based in this equation.
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is_structurally_coherent(s) = is_focused(s) (5.1)
∧ is_fully_connected(s)
∧ is_uniquely_linked(s)

The definition of structural coherence have been formalized as a boolean
evaluation function. The current model presented in this dissertation
states that a story is structurally coherent or it is not. Again, this is a
simplification that does not cover the complexity of human criteria. It was
decided to adopt this simplification in order to keep the model simple. Al-
though the evaluation function shown in Chapter 4 addressed a real range,
it is considered that it does not add relevant theoretical content to the de-
scription of the structural approach, which is the target of this part of the
research. Further work explained in Chapter 9 will address the improve-
ment of the model so that structural coherence could be rated in a real
interval.

Sections 5.6.1, 5.6.2 and 5.6.3 define the structural patterns intro-
duced in the definition of structural coherence. Section 5.3 shows how
these patterns are used and Section 5.6 formally defines them in terms of
preconditional links.

5.2.1. Focus

A story is focused when it has a single outcome. That is, it ends in a
single action or event. This definition is based on the work by Trabasso
about plot coherence [Trabasso and Sperry, 1985]. Intuitively, if a story is
told and no conclusion can be extracted from the narration, it could be
considered incomplete. This has been interpreted as a lack of coherence.
A formal definition of focus can be examined in Section 5.6.1.

5.2.2. Full Connection

A story is fully connected when every action is related to each other.
This definition tries to intuitively capture the restriction of simplicity that
only one single thread or plot can be told in simple stories. Fully connection
both captures the fact that no action in the story must be told without a
reason and that all relevant facts must be told (otherwise, the connection
would be lost). Full connection is formally defined in Section 5.6.2.
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5.2.3. Unique linkage

A story is uniquely linked if two events are related by a single idea or
conclusion. This is the conceptual definition of another part of simplicity
in coherent narrations. If two events are related to each other by several
relations, more than one thread is present. Therefore, the story is not
simple in the defined terms. This conceptual definition of unique linkage
is defined in Section 5.6.3.

5.3. Preconditional Links

Once the definition of structural coherence (that is formally defined
later) has been introduced, the created relation which will be used for this
formal definition is explained in this section: the preconditional link.

The definition of preconditional link is only inspired by the way in
which, heuristically, humans perform story understanding, but it does not
try to capture any cognitive process. Instead, the current proposal defines
it as a heuristic for machines, and not for humans. That is, the definition
is strictly bound to computationally processable information: not neces-
sarily the information that humans use and not necessarily processed in
the way in which humans do.

Pure causality was initially considered to form the base of the structural
approach. The basic concept of causality is not used in this model, while
there exist some other systems that make extensive use of it [Riedl, 2004,
Trabasso and Sperry, 1985].

Classic causality is not used because it is a very complex concept sub-
ject to philosophical discussion. As an example, if a mother orders her
daughter to cross the river to deliver a meal to her grand-mother, and the
daughter drowns in the river, did the mother cause the death? Or was it
the fact that humans cannot breath under water? This deep description
of causality (tightly related to guilt, in this case), makes it difficult the for-
mal definition of cause beyond its semantic properties, so the structural
definition of preconditional links was tackled. This relation is defined next:

In a story formalized as the sequence of actions {e1, · · · , en},
the actions

{
ei , · · · , ej

}
(the preconditions) are preconditionally

linked to ek (the consequence) if they appear before ek and the
directed graph resulting from the preconditional links for all
actions in the story presents structural coherence:

1. focus, by having all its actions converging to a single action
in the story,
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2. full connection, if has all its actions directly or indirectly
rooted in a single action and

3. unique linkage, for which every pair of connected actions
is connected by one link at most.

where 1 ≤ i, j, k ≤ n.

It could seem circular that preconditional links are defined in terms
of focus, full connection and unique linkage and these three patterns are
later formally defined in terms of preconditional links. This is because
being a synthetic relation, neither the patterns nor the relation itself make
sense without each other. This is way the definition is coupled. Empirical
evidence for this definition has been studied in order to prove its use. This
empirical study is detailed in Chapter 7.

This definition is obviously structural, that is, it only captures surface
properties of stories according to a synthetic relation. As an example, if
a story is composed by the actions {a, b, c, d, e}, valid preconditional links
would appear in Figure 1, but not in Figure 2.

The set of actions in the precondition of the preconditional link repre-
sents conjunction. The model does not consider representing disjunction
since this would lead to non-determinism, which is left out in this model.
The reasoning process about causality would be more complex if a story
did not uniquely determine the preconditional links of some fact.

As shown in Graphs 1 and 2, simple graphical depiction of precon-
ditional links is used to represent the graph of preconditional links in a
story in a more visual way. It is based on previous work regarding nar-
rative causality in which causality is depicted by arrows between events
[Trabasso and Sperry, 1985]. This graphical way of showing causality rep-
resents actions as labeled nodes or edges. In these graphs, the formal
representation of the action is the label (see Section 3.4), and directed
vertices represent causality. Origin of vertices starts in the action that is
part of the precondition and ends in the action that is part of the con-
clusion. Therefore, graphical representation of causality forms directed,
acyclic graphs. Since it is required that any member of the precondition in
a preconditional link appears strictly before the conclusion, graphs cannot
be cyclic.

In order to create a different symbol to make explicit that preconditional
links do not represent causality, the style of the arrow has been slightly
modified. Previous depictions of causality use to use classic arrows, so
it has been considered that adapting the symbol could help to visually
differentiate both relations.
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a
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b
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Graph 1: Valid set of preconditional links. The arrows represent precondi-
tional links.

a

c

b

e

d

Graph 2: Non-valid set of preconditional links. The arrows represent pre-
conditional links.

5.4. Other Properties of Preconditional Links

While preconditional links are theoretically defined in Section 5.3, the
current prototype has imposed additional restrictions on the properties
that valid preconditional links must satisfy in order to be computable.
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These restrictions are not included in the general definition of the model
because they have been imposed ad-hoc and some other decisions could
have been taken. In some cases, easing the implementation has been the
objective, in other cases focusing on the scope of the research on narrative
generation has been intended.

The first restriction establishes that preconditional chains are set to
be transitive by definition. If there exists a chain between a1 and a2, and
another chain between a2 and a3, then there exists a chain between a1

and a3. This is just a definition that makes easy to conceptually design an
algorithm for computing preconditional links, as it will be shown in Section
5.8.

A special action for creating the root for stories was created. It is de-
noted by the word root. In order to create a preconditional link for every
action all of them would have to have a previous action. The first action
in the story cannot have a previous action, so, in order to keep the for-
mal definition of structural coherence unchanged, this virtual action was
added. The root node is used to preconditionally link the first action. It
actually can be preconditionally linked to every action in the story, but in
practice (shown in Chapter 6), it is commonly linked to the first or the two
first actions in the story.

While it would have been possible to relax the definition of precondi-
tional link, it was decided to add the root node as an additional property
for the implementation because the definition of the algorithms was easier
(the algorithm is shown in Section 5.8.

A preconditional link for an action a, therefore, must be either root, or
a set of actions a1, · · · , an. Not only the first action in the story can be the
consequence of root, instead, every other action can be its consequence.

Cycles have been forbidden for preconditional links. The definition
makes it impossible to theoretically find a story with cyclic preconditional
links, but forbidding it in the computational model has made possible to
write simpler algorithms. That is, if there is a preconditional link in a
story stating that a � b, the preconditional link b � a would be forbidden,
where a and b are actions. Since preconditional links are transitive, non-
direct cycles are also disallowed. For instance, if a � b and b � c, the
preconditional link c � a would not be correct according to the definition.
Disallowing cycles permits easier computational algorithms, since cycles
could lead to infinite exploration and the system would have to handle it.

Graph 3 depicts a story with its preconditional links.
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root

love(violetta, alfredo)

ill(violetta)

betray(alfredo, violetta)

forces(germont, alfredo)

die(violeta)

Graph 3: Story with preconditional links.
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5.5. Preconditional Chains and Preconditional
Networks

Two actions ap and ac are preconditionally linked if there exists a pre-
conditional link in which ap belongs to the preconditions and ac is the
conclusion.

Chains of preconditional links (or preconditional chains) are defined as
ordered sequences of actions in which the action ai belonging to the chain
c is preconditionally linked to aj if i < j, where i and j are positions in the
list.

chainexample = [a1, a2, a3] (5.2)

in this example, a1 is preconditionally linked to a2, and a2 is precondition-
ally linked to a3.

The network of preconditional chains or preconditional network of a story
s is the set of all preconditional chains for s.

5.6. Formal Definition of Structural Patterns

Once the formal definition of the main structural relation for this model
not based on semantic processing of stories has been described, the struc-
tural patterns leading to structural coherence can be formally defined as
well.

It will be seen in Sections 5.6.1, 5.6.2 and 5.6.3 that the formal equa-
tions for the structural characteristics of coherent stories, namely focus,
full connection and unique linkage are defined based on several functions
which assume the existence of preconditional links. This existence is made
possible through the computation of the links as shown in Section 5.8.

5.6.1. Focus

How to compute whether a story is focused or not is formulated in
Equation 5.3. This equation states that a story is focused if the number of
actions belonging to that story that can be considered an outcome for the
story is equal to 1.

is_focused(s)↔ | {a | is_outcome(s, a)} | = 1 (5.3)

To compute whether an action a is an outcome for the story s or not, the
model considers the definition formalized in Equation 5.4. This equation
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mathematically represents that an action is the outcome of a story if there
exist some preconditional chain from every other action in the story to it. In
Equation 5.4, the existence of a function exist_preconditional_chain(s, a′, a)
is assumed. This boolean function returns true if there exists a precondi-
tional chain from a′ to a, and false otherwise.

is_outcome(s, a)↔ exists_preconditional_chain(s, a′, a) ∀ a′ , a (5.4)

5.6.2. Full Connection

Equation 5.5 shows the formal definition for full connection. The graph
formed by the preconditional links is fully connected if all its actions are
fully connected.

is_fully_connected(s)↔ action_fully_connected(s, a) ∀ a ∈ s (5.5)

An action if fully connected, according to Equation 5.6, if the special
action root is preconditionally linked to it or all the actions in the pre-
conditions for all preconditional links having it as consequence are fully
connected.

action_fully_connected(s, a)↔ preconditional_link(s, a) = root (5.6)
∨ action_fully_connected(s, a′)
∀ a′ ∈ preconditional_links(s, a)

The definition assumes the existence of preconditional_links(s, a). It
returns a set containing all preconditional links of the action a in the story
s. How this set of preconditional links is computed is explained in Section
5.8.

5.6.3. Unique linkage

Unique linkage is computed by checking that every action in the story
is uniquely linked, as shown in Equation 5.7.

is_uniquely_linked(s)↔ action_uniquely_linked(s, a) ∀ a ∈ s (5.7)

And, to check that an action a is uniquely linked, it is checked that
there are no duplicated preconditional links between any action in the
story and a, as formalized in Equation 5.8.
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action_uniquely_linked(s, a) ↔ ¬ duplicates_in(pl) (5.8)
where pl = all_preconditional_links_to(s, a)

5.7. Preconditional Rules

An action a can be the consequence of different preconditions, that is
b � a and c � a is permitted in the model. In fact, it is possible to abstract
the particular information present in stories about concrete preconditional
links and create preconditional rules.

Preconditional rules are pairs of preconditions and one consequence in
which the preconditions are sets of pattern-actions (as defined in Section
3.3.3), and the consequence is a single pattern-fact. Expression 5.9 shows
an example.

go(x?, y?) ∧ see(x?, z?) �want(x?, z?) (5.9)

The example shown in Expression 5.9 has a meaning analogous to first-
order logics: it means that if someone goes to some place and she sees
something, that person wants what she sees. That is, this full abstraction
of preconditional links makes it possible to use the information present in
one story as part of the definition of some domain.

5.8. Computing Preconditional Links in a Story

Computing preconditional links in a story consists on the process of
assigning the appropriate preconditional links to the corresponding facts
of a story, finally obtaining a structure like the one shown in Plot 3. This
structure must satisfy the requirements shown in previous sections.

For it to be feasible, the system needs a set of preconditional rules. Ba-
sically, computing the preconditional links for a story consists on choosing
among all possible preconditional networks that can be assigned to the
story through some input set of rules. Figure 5.1 depicts a black box
model of the process.

Algorithm 1 shows a pseudo-code version of the non-deterministic algo-
rithm for finding a correct preconditional network for a story. As depicted
in Figure 5.1, the input of the algorithm consists on a story and a set of
preconditional rules.
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Figure 5.1: Black box model of the preconditional links computation.

In this algorithm the set R is introduced. It contains a set of rules that
provide candidate preconditional links for each input story. These rules
define groups of events that can form valid preconditional links. The details
of that set, how it is constructed and the use in the model is presented in
detail in Chapter 6.

Algorithm 1 Pseudocode algorithm for assigning a preconditional network
to a story s.
1: s← current story
2: R ← set of preconditional rules
3: for candidate_network ∈ candidate_preconditional_networks(R, s) do
4: l ← apply candidate_network on s
5: if is_structurally_coherent(l) == true then
6: return candidate_network
7: end if
8: end for
9: return “Could not find any preconditional network for s.”

The created algorithm for computing preconditional links consists on
the search for a valid assignment of these links to every action in the
story. The algorithm tries to compute this links based on the structural
model proposed along the previous sections of this chapter. It has been
designed as a non-deterministic algorithm in which the function returning
the candidate preconditional networks (whose pseudo-code definition is
shown in Algorithm 2) does not impose any order in the way in which
networks are returned. The implementation of the function in the current
prototype (Chapter 7) actually imposes an order for efficiency reasons.

In Algorithm 2, yield returns a value but stores the state of the com-
putation, in such a way that, in case the returning value is not valid by
the calling environment, the execution continues from that point. This
definition tries to approximately represent a behaviour similar to Prolog’s
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backtracking or Ruby’s yield statement.

Algorithm 2 candidate_preconditional_networks: pseudocode algorithm
for finding candidate preconditional networks.
1: R ← set of preconditional rules
2: s← current story
3: for a ∈ s do
4: for any r ∈ R do
5: if a can be instanced with r then
6: add links between r ’s preconditions and a
7: end if
8: end for
9: end for

10: yield network

The onus of the system is then on finding adequate preconditional rules
to compute preconditional links producing coherent stories according to
human judgement. Chapter 6 explains how to partially automate this
task. It will be shown how human intervention can drive a semi-supervised
algorithm carrying out this process.

5.9. Chapter Summary

This chapter presents a structural model for narrative processing, as
opposed to the knowledge intensive version shown in the previous chapter.
The model is based on the preconditional link, an artificial relation created
for this work, and used for computational purposes (not trying to model
psychological or narratological concepts). The formal definition of this
relation is given and its graphical depiction is also presented.



Chapter 6

Automatic Extraction of
Preconditional Rules

Chapters 3 and 5 have set the base for creating the definition of a rule
extraction process which, when seen as a black box model, receives

as input a set of coherent stories (according to the definition in Chapter
5), a set of human judgements (through supervision), and outputs a set of
preconditional rules. This chapter explains how this rule gathering process
is carried out and its relation with the model.

Figure 6.1 depicts a graphical schema of the pseudo-automatic extrac-
tion process. This graph intends to show the cyclic nature of the proposed
algorithm.

Along next sections it will be explained how human criteria is gathered
through a refined set of preconditional links. This refinement is carried
out by applying partial human opinion and simple boolean query for co-
herence is asked to a human evaluator. An iterative rule extraction process
is proposed. On each iteration, the set of preconditional rules already col-
lected are used to generate stories. These stories are then given to human
evaluators in order to check for appropriateness (coherence). After the
generated stories are evaluated, the generated set is divided in “good” and
“bad” stories. Then, new preconditional rules are extracted and added to
the current set, thus getting an updated set of rules that is used to perform
a new iteration. The rule-gathering process stops when the percentage of
“good” stories falls above some given threshold [Gervás and León, 2010].

101



102 CHAPTER 6. EXTRACTING RULES

story sequence preconditional
links

preconditional
rules

+

graph

rule-set

computer
generated story

story in
natural

language

structural
constraints

on coherence

identification abstraction

abstraction

addition

generation

human
trans-
lation

realizationhuman validation

Figure 6.1: Graphical depiction of the rule extraction process.

6.1. Set of Possible Preconditional Rules

Section 5.7 explained the formal structure used to represent precondi-
tional rules. A pair in the form of preconditions � consequence was used
to express that some set of actions (patterns actions) could lead to some
consequence (represented as a pattern action as well).

Considering some set of candidate pattern actions π (among other el-
ements), it is possible to specify a set of preconditional rules determining
the domain. The definition of the domain follows the same rules than those
presented in the definition introduced in Section 3.5.

The PD set is defined as the set of all possible preconditional rules in
some domain D in which the set of pattern actions is πD. The elements of
PD are {r1, r2, · · · , rn, · · · }, where ri is a rule as defined in Section 5.7, and
they are composed by pattern actions taken from πD.

For instance, Expression 6.1 shows an example of the preconditional
rules for some domain Dj.

PDj = {take(x?, y?) � give(x?, z?); jump(?x) ∧ clumsy(?x) � fall(?x)} (6.1)

PD is an infinite set if there is no limit on the size or in the allowed
pattern actions in the preconditions of the rules. That is, it would be
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always possible to create a new rule since, having previously generated the
rule p1∧p2∧· · ·∧pn�e, a new rule is created in the form p1∧p2∧· · ·∧pn∧pm�e.
Here, pm is a new pattern action taken from πD in which all variables are
unbound and they are different from the variables in p1 ∧ p2 ∧ · · · ∧ pn.

While that definition makes the set infinite, a finite subset is useful to
extract preconditional rules, as it will be explained in the next sections of
this chapter. A simple approach to a finite subset is to set a limit on the
size of the set of preconditions.

If it is considered that two sets or preconditions are equal if their pattern
actions have the same structure, constraining the size is enough. Two pat-
tern actions have the same structure if their kernels are equal, their ground
actions are equal as well and they are located in the same parameter, and
their variables, even if different, show the same structure regarding the en-
tity they represent. For instance, go(x?, park) and go(y?, park) are defined
as structurally equal pattern actions.

Regarding preconditional rules, then, go(x?, park) ∧ eat(x?, food) are
structurally equal to go(y?, park) ∧ eat(y?, food), but not to go(x?, park) ∧
eat(y?, food).

Summing up, taking into account these assumptions the only needed
parameter for this approach to a non-infinite set is n, the maximum num-
ber of pattern actions per precondition. Section 3.5.1 shows how this is
used in the rule-extraction algorithm.

6.1.1. Size of the Set of Rules

Previous sections have introduced a way of constraining the infinite set
of preconditional rules. Since the knowledge acquisition algorithm that is
proposed for this research carries out a generate and test pattern, as said
in the introduction of this chapter, setting some restrictions on the set that
can be generated is useful because in that way the algorithm will finish.
This would not happen with an infinite set if it was totally explored.

According to this, knowing a priori the size of the set that is going to be
explored is useful because it allows to estimate the cost of the exploration
in the worst case. This worst case happens when no solution can be
found, which produces a full exploration of the set (because, until the last
candidate is discarded, a solution can still be found).

To compute the size of the set, the number of possible single pattern
actions in some domain D must be known first. Assuming a finite number
of kernels, any simple counting process outputs this number, p. This
value, p, depends on the number of kernels and on the allowed patterns
of variables for it. That is, for a kernel eat, the patterns of variables x?, y?
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and x?, x? could be allowed, thus producing eat(x?, y?) and eat(x?, x?). If
those were the only pattern actions in the domain D, pD would have a value
of 2.

The set of possible preconditional rules for some type of action a is
denoted by Pa, where a is a kernel in some domain D. Knowing the val-
ues for pD and n (which is a parameter), the definition of the amount of
possible preconditional rules can be computed according to the expression
in Equation 6.2. In this equation, n is the maximum number of actions
that can be part of the precondition (that is, the size of the precondition in
the preconditional link is restricted), and v is the cardinality of the set of
kernels.

For simplicity, it is assumed, in Equation 6.2, that every kernel can be
instanced in the same way. That is, every kernel can create pD pattern
actions.

|Pa(v, pD, n)| = 1 +

n∑
i=1

(pD × (v − 1))i (6.2)

where 1 is added to the expression because the precondition root is always
a candidate, and since cycles are not allowed in the definition of precondi-
tional links, the set of actions that can belong to the preconditions is equal
to the set of actions, except the action that is on the effect, that is why v−1
and not v multiplies p.

From the definition shown in Equation 6.2, the cardinality of the set
of preconditional rules, C , can be defined. Equation 6.3 represents the
formalization of this cardinality.

|C (v, pD, n)| =

1 +

n∑
i=1

(pD × (v − 1))i
v (6.3)

where v, pD and n are defined in the same way as before.
Instancing the parameters of Equation 6.3 can give an example of how

big the set is. For example, let us say that v = 15, (15 kernels compose
the domain), n = 2 (1 or 2 actions can be in a precondition) and pD = 4
(4 types of pattern actions can be created for each kernel). With a domain
composed by 15 verbs, which is the analogous definition when interpreting
the domain with human knowledge, the space of preconditional rules in
which valid subsets can be explored has a cardinality shown in Equation
6.4.
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|C (15,4,2)| =

1 +

2∑
i=1

(4 × (15 − 1))i
15

(6.4)

= 365 × 1050

That is, 365×1050 possible sets of causal rules are candidates. Accord-
ing to the measurements on a AMD PhenomTM9550 Quad-Core Processor,
approximately 3000 sets are explored per second. This makes a full explo-
ration of the set last 3.86×1041 years. While this would happen, according
to the proposed algorithm, in the worst case, it is obviously an intractable
solution that should be avoided or reduced to make the experiments feasi-
ble.

The rule acquisition method must process the set of preconditional
rules. Since the set is so big, some solution must be created to turn its
exploration a tractable problem. In order to bypass this issue, the search is
more aggressively informed and the explored subset of the space is smaller.
The used techniques are explained in Section 6.2.

6.2. Constrained Set of Preconditional Rules

The previous section has shown how big the set of candidate precon-
ditional rules is. Although finite, it is too big to be tractable. Like most
Artificial Intelligence problems facing this issue with space exploration, in-
forming the search, that is, applying restrictions by the inclusion of addi-
tional knowledge in the process, can be the key to transform an intractable
solution into a tractable one. This has been the chosen solution.

6.2.1. Restrict the Search for Candidates in Stories

The main improvement on the restriction of the set has been to generate
only promising preconditional rules. This has been done by defining a set
whose members in the form of preconditional rules are only generated
from elements from analysed stories instead of taking them from the whole
domain.

For instance, if preconditional rules are going to be extracted from For-
mal Story 2, the domain would be composed by the kernels go, buy, watch,
like and leave. If for each of these kernels all possibilities were examined,
the set would be too big. However, many preconditional rules are actu-
ally not valid for this story. Given the definition of preconditional rules
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explained in Section 5.3, the preconditions must appear before the conse-
quences. Therefore, it makes sense to include in the set only those rules
in which the actions included in the preconditions appear strictly before
the preconditions in the story.

go(john, cinema)
buy(john, popcorn)
watch(john,movie)
like(john,movie)

leave(john, cinema)

Formal Story 2: Example formal story for extracting preconditional
rules from a more reduced set.

According to this restriction, pattern actions formed by the kernel go
(go(x?, y?), for instance) can only be the conclusion of root, because no
action is before that one in the story. The only reasonable preconditions
for pattern actions generated for buy are those generated for go or root, and
so on. This means a very important improvement in the computational
definition of the set, and therefore has a big impact on the performance.

Equation 6.3 can be used to estimate the cardinality of this set of sets
of preconditional rules without this improvement, which is computed in
Equation 6.5. With 4 instantiations of each kernel as pattern actions
and a maximum of 2 actions per precondition, the size of the set is 15 ×
1011, which would be equivalent approximately to 16 years with the used
computer in the worst case (around 3000 elements per second on a AMD
PhenomTM9550 Quad-Core Processor).

|C (5,4,2)| = 15 × 1011 (6.5)

With the explained improvement, the cardinality set of candidate ac-
tions for each action in the preconditions is computed by Equation 6.6.

candidates(position, p, n) = 1 +

min(n,position)∑
i=1

((position − 1) × p)i (6.6)

where position is the order of the particular action in the story and n is the
maximum amount of allowed actions per precondition and p is the number
of possible generated pattern actions.
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The cardinality of the set is noticeably reduced, as shown in Equation
6.7, considering that the system looks for a rule for each action in the story.
The result of the cardinality of the C ′ set (with the restriction applied) for
the example story is computed by accumulating the number of rules of the
first action plus the second action, the third one, and so on.

|C ′example story(5,4,2)| =

5∑
i=1

candidates(i,4,2) (6.7)

= 1 + 5 + 73 + 156 + 272
= 507

The improvement on the size of the set is obvious. While this is a toy
example, it is clear by examining the equations that less time is required.
This way of constructing the set makes it possible to perform experimen-
tation.

6.2.2. Limiting the Candidates by Distance

While the modification of the trivial definition of the set shown in Sec-
tion 6.2.1 severely reduced the required computational cost, the equations
show that the problem is still computable only in exponential time.

To permit a more fine-grained improvement, the model accepts a new
parameter, vp, which sets the maximum number of actions that can be
searched backwards in a story for including as members of the precondi-
tion.

For instance, if vp is set to 2, only 2 actions can be searched backwards
for like according to Formal Story 2. Thus, only pattern actions created
from the kernels buy and watch can compose the preconditions of pattern
actions generated for like. While this does not noticeably affect short sto-
ries, the amount of sets of preconditional rules for long ones (those with
many kernels) can be reduced by tweaking this parameter. Equation 6.6
is therefore transformed to Equation 6.8.

candidates′(position, p, n, vp) = 1 +

min(n,position)∑
i=1

((
min(position − 1, vp)

)
× p

)i
(6.8)
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6.3. Rule-Extraction Algorithm

The rule extraction algorithm is based on the function for identifying co-
herent stories (the is_structurally_coherent function shown in Section 5.2)
and a rule generation algorithm later explained. This rule extraction algo-
rithm iteratively generates candidate sets of preconditional rules according
to the order imposed by the algorithm shown in Section 6.3.2 and checks
whether the stories in the corpus are coherent when coherence is evalu-
ated using those generated rules. The rule-set which makes all the stories
in the corpora be evaluated as coherent is chosen as the acquired set of
preconditional rules. If no set of rules is found, the algorithm finished with
an error return value.

6.3.1. Input Corpus of Simple Stories

The first step in the rule gathering algorithm consists on the processing
of a set of stories as a corpus. The algorithm requires a corpus composed
by stories that are deemed as coherent a priori. The rules collected by
this first stage will be taken as preconditional rules defining a generation
process for “good” stories.

The corpus is sequentially processed. Each story is analysed as ex-
plained in Section 6.3.2, and the corresponding preconditional rules are
extracted. After that, a story is generated from those rules (as detailed
in Section 6.3.3) and human criteria about it is obtained. That new story
is then used as a corpus to repeat the process until the stop condition is
satisfied (Section 6.3.6).

It would have possible to perform preconditional rule extraction from
the corpus with all the input stories at once. In such a version of the
model all kernels from all stories would have been used to search for plau-
sible rules. While this is possible, the cost of the exploration of the set
would be much higher because, according to Equation 6.7, the cost grows
exponentially with the number of kernels. Additionally, it does not add
any theoretical improvement to the model and, in the preliminary tests
that were carried out where all stories were taken together, the was no
difference in the quality of the results.

Any corpus of stories formalized as shown in Chapter 3 is processable
by the proposed model and by its implementation (detailed in Chapter 7).
However, the results will only be valid if the content of those stories satisfies
the constraints imposed by the definition of simple stories, as previously
defined.
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The input corpus is only explicitly used in the first iteration of the pre-
conditional rules acquisition process. After that first iteration, the rules
are refined by querying human opinion (Section 6.3.4), and thus the in-
put corpus is not used again as such. The impact of the quality of the
corpus, therefore, is somewhat reduced by this direct human intervention.
It is difficult to quantify the extent of the impact of the corpus because it
depends on the particular quality of the stories and the way in which a
human supervisor rates the stories generated with the rules collected at
some stage of the process.

In fact, on each iteration, a new story is generated, so it could be said
that a new corpus based on the initial one is being created: nothing would
prevent from using the coherent stories generated in the process as input
corpus for another execution, although this has not been addressed. Ad-
ditionally, human supervision makes it possible to create “bad” stories, or
non-coherent ones when they are rated.

This corpus of non-coherent stories can only be synthetically generated
in practice (as in this model) because there does not exist a corpus of “bad”
stories. While the set of public coherent stories written by humans is huge,
non-coherent stories, in the terms defined in this dissertation, are hardly
available.

6.3.2. Generating Preconditional Rules

Both for each story in the input corpus and for each generated story
(as shown in following sections), preconditional rules are extracted. This
is carried out as detailed in Algorithm 3. This algorithm is analogous to
the algorithm for creating preconditional links shown in Algorithm 1, and
it implicitly abstracts the rules from the links in a variabilization process
[Charniak and McDermott, 1985].

Algorithm 3 Pseudo-code algorithm for acquiring preconditional rules
from a corpus of stories.
1: s← current story
2: for next_candidate ∈ next candidate set of preconditional rules do
3: slinked ← compute preconditional links of s with next_candidate
4: if ϸ(slinked) == true then
5: return next_candidate
6: end if
7: end for
8: return “Could not finish rule gathering process.”
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In the implementation the set is not generated a priori and the candi-
dates extracted, instead it is iteratively generated. The algorithm consists
on a generate and test pattern in which sets of preconditional rules are
iteratively created and checked against the input story. If the current set
of preconditional links makes it possible to rate the story as structurally
coherent according to the definition presented in Section 5.6, the set of
preconditional links is considered acceptable and it is returned.

From a theoretical point of view the order of extraction of preconditional
rules is not specified in the model. That is, any order of generation could
work, so no restrictions are imposed. On the other hand, the order in
which the rules are tested influences the result of the algorithm, so in
practice, the order must be taken into account.

Although this is somewhat part of the particular implementation of the
solution (fully detailed in Chapter 7), the order of generation is defined here
for completeness.

The story that is being processed is s, and it is an ordered sequence
of actions: s = {a1, a2, · · · , an}. The kernels for the actions can be ex-
tracted following the order of the actions in the story, avoiding dupli-
cates. Then, the set of kernels is stored in an ordered set K. Therefore,
K = {k1, k2, · · · , km}. To generate the rules, this order establishes the order
of the generated rules.

Each candidate set of preconditional rules is generated as described in
Algorithm 4. The formal definition of the candidate_rules function can be
examined in Algorithm 5.

Algorithm 4 Order of generation of the candidate sets of preconditional
rules.
1: s← current story
2: K ← set of kernels from s
3: R ← {}
4: for i ← 1 until i = |K | do
5: add candidate_rules(Ki , s) to R
6: end for
7: return R

For the function candidate_rules, a new parameter is included: the
maximum number of rules per kernel, m. So far, only one rule per kernel
was considered, but this is not complete. It could be the case that two
actions with the same kernel are present in some story, as exemplified in
Formal Story 3.

In this story, a preconditional rule in the form of root � go(_?, _?) will
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go(john, cinema)
buy(john, popcorn)
go(john, home)

Formal Story 3: Example story with two actions sharing the same ker-
nel (go).

be found by the algorithm. This is because the first action in the story is
go(john, cinema) and root will always be preconditionally linked to the first
action in a narration, as explained before. The notation _? is used here to
represent any variable (x?, y?. . . ).

However, it could be the case that the kernel that corresponds to
go(john, home) needs another preconditional rule. This rule must be dif-
ferent from root � go(_?, _?) to be able to find a structurally coherent pre-
conditional network. This is why more than one preconditional rule per
kernel is allowed (from 1 to m preconditional rules, in this model).

Algorithm 5 Candidate rules for each kernel.
1: s← current story
2: k ← current kernel
3: m ← maximum number of rules per kernel
4: for i ← 1 until i = m do
5: yield i rules for k in story s
6: end for

Algorithm 6 Algorithm for yielding a concrete number of rules (auxiliary
algorithm for Algorithm 5).
1: s← current story
2: k ← current kernel
3: j ← number of rules to be generated
4: rules← {}
5: for i ← 1 until i = j do
6: add a new rule to rules according to single_rule(s, k)
7: end for
8: yield rules

The yield statement in Algorithms 5 and 6 returns a value but stores
the state of the computation, in such a way that, in case the returning
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value is not valid by the calling environment, the execution continues from
that point, as defined in Section 5.8.

The function single_rule(story, kernel) yields rules according to the next
order. It is assumed that there exists a function iteratively creating pat-
terns of variables vara , · · · , varb, as later explained:

1. First, the root token: root � kernel(var1, · · · , varn).

2. Then, the kernel for the previous action in story:
kernelprev action(vari , · · · , varj) � kernel(varx , · · · , vary).

3. After that, step two is repeated by going backwards in the story until
the first action. That is, if the story contains the actions {a, b, c}, the
tested preconditions for the action c will be formed by the kernel in
b, and then by the kernel in a.

This order assumes some set of variables
{
var1, · · · , varj

}
. The variables

are created by analysing the tokens of the actions in which the creation of
preconditional rules is based. The process first examines all the different
tokens in the story, yielding a set T = {t1, · · · , tn}. Then, a corresponding
set of variables is created, mapping each token to a new variable: V =

{v1, · · · , vn}.
When the search for preconditional rules starts and the kernels must

be completed with variables to create pattern actions, the set of variables
for each pattern action is assigned using the mapping between tokens and
variables according to the story.

For instance, if a mapping {john → x?, cinema → y?, home → z? · · · }was
created, searching for a preconditional rule for go would yield the pattern
actions go(x?, y?) and go(x?, z?) because the story only contains the actions
go(john, cinema) and go(john, home).

Summing up, the example story in Formal Story 3 would perform the
search for a set of preconditional rules for the kernel go by exploring the
set of next candidates for a maximum value of actions per preconditional
rule of 2 and a maximum value of 2 rules per kernel (the search would end
before exploring this whole set):

root � go(x?, y?)
root � go(x?, y?); buy(x?, a?) � go(x?, z?)

buy(x?, a?) � go(x?, z?)
buy(x?, a?) � go(x?, z?); go(x?, y?) � go(x?, z?)

go(x?, y?) � go(x?, z?)

The returned set of preconditional rules is next:
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root � go(x?, y?); buy(x?, a?) � go(x?, z?)

The order in which preconditional rules are gathered (generated, ac-
tually) and the value for the parameters certainly affect the output of the
rule-acquisition process. Other rule selection order and other parameter
tweaking would yield very different structural patterns for stories, which
would lead to acceptance or rejection of different stories as coherent.

For instance, an order in which every action would be first precondi-
tionally linked to root and every action but the last one would be precondi-
tionally linked to the last action is possible and would create structurally
coherent stories. For example, Graph 4 shows an instance of this struc-
tural pattern1.

a cb

e

d

root

Graph 4: Example of the resulting structural pattern when changing the
selection order.

If this pattern was commonly found when extracting preconditional
rules, these would be too specific and they would not be useful to create
new content, since the rule-collection process for every story would be
yielding these rules:

root � a
root � b
root � c
root � d

a, b, c, d � e

1Thanks to Dr. Peinado for discovering this issue.
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These rules are of little use outside the input story. While the system
would still output new content, it would be very difficult to improve the
generative capabilities of any story generation system with such rules. It
is therefore concluded that the order and the particular restrictions in
which preconditional rules are generated affect not only the efficiency of
the algorithm, but also the quality of the results.

The chosen parameters for the implementation are explained in Sec-
tion 7.2.2. These have been empirically tweaked to perform acceptable
preconditional rule extraction.

6.3.3. Story Generation

Intervention of humans regarding knowledge acquisition in the devel-
opment of Artificial Intelligence systems must be properly isolated from the
rest of the system in order to avoid non-intended influence [Ritchie, 2008].
This increments not only the maintainability of computational systems,
but also helps to identify the limits of the system.

To ensure to the possible extent this property still including human
supervision to perform preconditional rule gathering, human criteria is
collected by querying a simple boolean evaluation of coherence over auto-
matically generated stories (this process is detailed in Section 6.3.4). The
proposed model tries to establish clear bounds on the participation of hu-
man knowledge by obtaining very specific information (yes/no) from very
specific sources (computer generated stories). As it is explained in Section
7.3, the experiments that have been carried out do not allow for any other
interaction between the evaluators and the system.

Automatic story generation is therefore addressed in this work. The
theoretical model that is being detailed in this chapter does not impose a
single way of creating stories. From an abstract point of view, any story
generation process whose outcome is directly influenced by the gathered
preconditional rules can be used to adapt the collection of preconditional
rules. If this condition is satisfied, the system can automate the refinement
of the preconditional rules. If it is not, the refinement is not ensured.

Since the theoretical model is not imposing any restriction, the defini-
tion of the computational system for generating stories is detailed as part
of the implementation, in Section 7.3. It is important to make clear at this
point that the quality of this story generator is far from good, and it is an
accepted flaw. However, since the focus of this work is not set on this part
of the system but instead on the acquisition of the structural elements
used to generate, better story generation is planned as part of the future
work 9.
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6.3.4. Gathering Human Criteria

As introduced in Section 6.3.3, human criteria must be used to differ-
entiate “good” stories from “bad” ones. The process considers stories gener-
ated by any procedure fulfilling the requirements previously explained and
a judgement process based on human criteria is fed with these stories.

Analogously to story generation, the theoretical model does not impose
any particular way of applying human criteria on the generated stories.
From a black box perspective 6.2, a story is inputted in this stage of the
process, and a boolean output value is expected: true if the story is coher-
ent and false if the story is not, according to the evaluator criteria.

computer
gener-

ated story

human
evaluator

set of good
stories

set of bad
stories

read

rate as good

rate as bad

Figure 6.2: Black box model of the judgement gathering process.

More concretely, for a simple implementation (shown in Section 7.3)
the model proposes a straightforward criteria-gathering process: a natural
language version of the story is created and given to the human, who simply
reads it and classifies it in these terms (boolean value for coherence).

A boolean classification of the quality of a story is admittedly an over-
simplification of the problem. As it has been suggested in Chapter 4,
it is clear that the set of variables influencing the judgement of quality
contains more aspects, and these are not being taken into account. While
this limits the scope of the solution, it is considered to be a reasonable
option. It narrows down the scope of the research and makes it possible to
put the focus on the process itself (the framework for structural schemas
acquisition). A more detailed discussion is presented in Section 8.1.5.

6.3.5. Gathering and Merging “Good” and “Bad” Precon-
ditional Rules

Algorithm 3 extracts preconditional rules from any set of stories as long
as there is some possible assignment of causes making the evaluation of
coherence return a valid value. This produces a set of rules that can be
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applied in several systems, particularly in automatic storytelling, as it has
been done in the prototype implementation.

In a simple approach, preconditional rules extracted only from coher-
ent stories were used as basic rules in which a simple unification pat-
tern generated a story valid accordingly. Such a system was implemented.
When testing the implementation of this proposed generation system, non-
coherent stories were generated as if they were coherent according to the
rules that the system had collected so far. They were obviously not coher-
ent from a human point of view and also taking into account the intended
meaning of actions in the training corpus: a dead character was doing
things after his death. Formal Story 4 shows that generated story that
allowed the identification of this error.

love(alfredo, violetta)
love(germont, violetta)
love(violetta, alfredo)

die(germont)
force(germont, violetta)

die(violetta)

Formal Story 4: Non-coherent story generated by a simplistic version
of the model. This story helped to detect some limitations that were
later addressed in the definitive algorithm.

After analysis, the reason of this lack of coherence in the first prototype
without bad stories was unveiled: simply joining rules from each iteration
of the system, assuming they were coherent, led to a wrong solution: pre-
conditional rules were coherent only for their originating stories, but once
merged with other rules the resulting set did not ensure coherence.

To fix this important flaw, the inclusion of a process for identifying
also non-coherent rules (and therefore discarding them from the set for
generation) was addressed as previously explained in Section 6.3.4.

In order to do this, the current model considers a rule-set partitioned
in good rules and bad rules after human intervention. To abstract this
simple classification to insert the rules in either set, after the story has
been classified, the preconditional rules from the stories are extracted (as
previously detailed), and then, these criteria is followed:

The set of good rules contains those abstracted preconditional links
present in stories tagged as correct by humans.
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The set of bad rules contains the abstracted preconditional links
present in stories tagged as non-correct if these abstracted precon-
ditional links are not in the set of good rules.

That is, if a story considered correct si, after analysis, created the
preconditional rules {r1, r2, r3} and a non-correct story sj created rules
{r1, r4, r5}, the resulting good subset would contain the rules {r1, r2, r3} and
the bad subset would contain the rules {r4, r5}.

There are many more ways of creating the rule set, but for prototyp-
ing the system and for explanation purposes this approach is simple and
useful. The study of more sophisticated ways will be addressed in further
research 9.

6.3.6. Stop Condition

Once the set of “good” and “bad” rules has been updated with new
preconditional rules, the next iteration starts. As shown in Figure 6.1
and Algorithm 3, the iteration performs the loop in the story generation
process. That is, the updated set of preconditional rules is used to create a
new story. This new story could be coherent or not, and so it will be rated
by the human evaluator.

The algorithm was set to stop when a certain number of stories were
rated as correct in a row. The stop condition has been empirically set, so
it is therefore explained in detail in Chapter 7, where the empirical results
led to a conclusion from which the stop condition was deduced: saturation,
explained in Section 7.5.1.

6.4. Chapter Summary

This chapter proposes, based on the notion of preconditional link and
on the definition of narration that has been detailed in previous chapter, a
human-supervised process for acquiring structural schemas, in the form
of rules. These rules can then be used to generate stories, as it will be
explained in the next chapter.
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Chapter 7

Implementation and Results

This chapter shows the implementation of the model that has been pro-
posed along past chapters and how this implementation has been used

to carry out some experiments that try to validate, to the possible extent,
the original hypothesis.

Additionally, the experimentation was not only valid to check that the
initial ideas were relatively correct. It also has helped to identify new
problems and challenges that are either limitations of the approach or new
objectives targeted as part of the future work.

Both the implementation and the tests have been carried out on a AMD
PhenomTM9550 Quad-Core Processor. Only one processing core has been
used when executing the searches for rules and the generation of stories,
although the nature of the searches of the different proposed algorithms
would allow for a parallel solution. This has not been implemented since it
has been considered that the study of how to parallelize the code efficiently
and the cost of that implementation would be too high. In the best case
a speedup of 4 would have been reached. While this would have been
noticeable for the executed tests, the nature of the problem would not have
been turned the whole exploration of the proposed sets into a tractable
problem, so the effort would have been useless if the search space had not
been not reduced. Additionally, parallelization is outside the scope of this
research.

7.1. Corpora of Stories

Three domains have been used during the development of this research:
murder stories, Aesop’s fables and short opera plots. They have been used
at different stages of the development of the proposed system, and they

119
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have incrementally led to conclusions that have made the final results
possible.

They are all detailed here for completeness purposes, although the only
shown execution example here was run with operas (Section 7.1.3). The
experiments with murder stories is shown in Chapter 4, and the prelimi-
nary experiments with fables were not satisfactory enough to carry out a
full experimentation with external human judges (it is later explained why).
It was considered that including here the other studied domains could help
to justify the selection of that domain.

7.1.1. Murder Stories

The first working prototype of the evaluation function was built for
short plots of murder stories. The intention was to study the plausibility
of an evaluation function for stories, not only bound to pure correctness
[León and Gervás, 2010]. The results from this chosen domain are shown
in Chapter 4. This implementation considered a bigger set of variables,
which were chosen without any narratological or psychological model. The
selection was based on the author’s intuition about what constitutes a
good murder story.

The empirical results were promising. Experimentation with humans
showed that creating an evaluation function measuring several, heteroge-
neous variables based on a sequential analysis of a formalized version of
texts can match human criteria. However, it was soon clear that just by
shifting the focus was not enough: the knowledge acquisition bottleneck
was still present.

Once this was identified, the domain of murder stories was abandoned
because it was necessary to manage a usable external corpus. This kind
of resource would ensure coherence (assuming that all the stories in the
corpus are coherent). There exist many murder stories written by humans
and they are freely available, but they are too heterogeneous and too dif-
ferent between them to create a good corpus without a very big effort. This
was why a new domain was chosen for shifting to structural processing of
stories.

7.1.2. Aesop’s Fables

After the development of the first version of the evaluation function,
it was clear that refining the model and reducing the research scope was
needed for a robust model to be feasible. The focus was then redirected to
a more clear set of narrative characteristics. Therefore, a new domain was
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chosen. In order to make this decision, several aspects were taken into
account:

Simplicity of representation. This reduces the effort needed to for-
malize stories, and yields the current average computational power
of a personal computer as completely valid for implemented tests (the
current tests have been run on a AMD PhenomTM9550 Quad-Core
Processor).

Grounded semantics. The meaning of the events is plain and it does
not require to understand anything beyond the action.

Appropriate narrative properties. The domain must fulfill the re-
quirements that this research sets on the scope of application of the
solution.

Availability of corpora. Since a training algorithm is to be applied on
the input data, freely availability of the data is mandatory.

Fables were chosen as the next working domain1 because they have
several advantages as domain for research and study:

Fables are usually short. This is an important advantage of fables
over novels, for instance, and it makes it possible a simple represen-
tation.

Fables are simple. Content in fables does not analyse complex hu-
man behaviour, and story plots are not excessively complicated. This
ensures grounded semantics and, again, a simpler representation
than for novels, for instance.

Fables are available. Fables written by many authors, those from Ae-
sop [Aesop, 1992], Perrault [Neil and Simborowski, 1993] and others
are freely available for download on the Internet, and without any
restricting licence. A large corpus is available.

Most classic fables are translated to many languages. This allows for
experimentation with fables and human judges with different native
languages, at least for preliminary testing.

Fables define common human behaviour. It is true that, in general,
classic fables have animals as protagonists. However, these protag-
onists really play the role of human beings.

1Thanks to Dr. G. Ritchie for this suggestion.
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Fables do not contain “magic” or other non-real content. Since mod-
elling magic is never easy, fables are more suited for scientific anal-
ysis than fairy tales, for example. Grounded semantics are, again,
possible.

Fables are usually known by people. Although this is just an as-
sumption based on the author’s experience, in general it is possible
to say that people (from western culture) has more information about
fables than about experimental narrative, for instance.

All these reasons influenced the selection of fables as the base domain
for this research. Although some other domains could make sense. For
instance, fairy tales, if magic is omitted, could have been a good candidate.
However, no other common narrative domain was considered to be more
adapted to the research domain.

Having decided that fables were the target domain, a set of narra-
tions to include in the training corpus was chosen by following a pseudo-
random process: it was decided that the first book in Project Gutenberg
[The Project Gutenberg Team, 2010] of the fable writer whose name ap-
peared first on Wikipedia when looking for “fable” in the English version2

would be the source for narrations. The first author, following chronologi-
cal order, is Aesop. The resulting book was Aesop’s Fables [Aesop, 1992].

An example fable taken is shown in Story 9. The formal version that
was created is shown in Formal Story 5. The process of translating fables
in English to the corresponding formal version is explained next.

It happened that a Dog had got a piece of meat and was carrying it
home in his mouth to eat it in peace. Now on his way home he had to
cross a plank lying across a running brook. As he crossed, he looked
down and saw his own shadow reflected in the water beneath. Thinking
it was another dog with another piece of meat, he made up his mind
to have that as well. So he made a snap at the shadow in the water,
but as he opened his mouth the piece of meat fell out, dropped into the
water and was never seen more.
Beware lest you lose the substance by grasping at the shadow.

Story 9: Example fable: “The Dog and the Shadow” [Aesop, 1992].

2http://en.wikipedia.org/wiki/Fable
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carry(dog,meat)
cross(dog, river)

see(dog, the_shadow)
consider(dog, the_shadow, shadow)

attack(dog, the_shadow)
drop(dog,meat)

Formal Story 5: Example of a formal version of a fable (“The Dog and
the Shadow”).

Transforming fables in English to a formal representation processable
by a computer was made by hand. The process consists on reading each
sentence of a fable in English and creating a single action with the appro-
priate tokens representing the entities that are referenced in the sentence.
For instance, the fable “The Two Crabs” starts as follows:

One fine day two Crabs came out from their home to take a
stroll on the sand.

This is translated to a set of facts represented in the partial Formal Story
6. It can be observed that the translation carries out a very important loss
of content. First, literary structures like “one fine day” are removed, and
“came out” is translated to “go”, which is a simpler and more generic form.
The formalized stories follow the conventions set for the definition of simple
stories explained in Section 1.2.

go(crab1, home, sand)
go(crab2, home, sand)

Formal Story 6: Example of simple translation of a fable.

This way of creating the formalization of human-written stories is an
important point of discussion because the author’s knowledge about the
system is clearly involved in the process, and therefore the influence he
is exerting on the output can impact the results of the experiments. This
issue is discussed in detail in Section 8.1.2. While this kind of manual
translation is clearly a problem, doing it in a fully automatic way is a hard
Artificial Intelligence problem for which no solution has been proposed so
far.
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Fifteen fables from a set of 82 were selected because it was considered
that they well represented a good corpus for a prototype. Formalizing them
required a little effort, so considering too many narrations would have been
too costly. A number too low would have not been useful to perform a
complete analysis. Without any special further reason about how many
narrations to study, it has been considered that 15 items were enough.
This, of course, is open to discussion. Section 8.3.1 studies this situation.

Once the limits of the knowledge based approach were clearly expe-
rienced, the structural processing of fables was carried out in the way
explained along Chapters 5 and 6. A problem related with the particular
domain was found: although fables have a very simple and similar struc-
ture, many different events occur in them. Since this happens, the number
of acquired preconditional rules per kernel is low: there are typically only
one or two actions for each kernel in the whole corpus. This makes it more
difficult to experiment in the proposed terms because having only one or
two rules leads to generation of stories extremely similar to the original
ones. They would be rated as coherent most of the times but they would
have been copies.

Therefore, the required domain needs to include many instances of a
relatively reduced set of kernels. Operas were chosen as a good candidate
because it was identified that they typically contain plots about the same
type of stories (tragedies).

7.1.3. Operas

Once it was identified that fables were not well suited for acquiring
rules through the application of the proposed rule extraction algorithm
because of the previously explained problems, a new working domain with
an appropriate corpus was selected. The requirements of this different
corpus were quite similar to the ones introduced in Section 7.1.2, plus the
constraint of a high proportion between number of available samples and
verbs.

Operas from the XIX century follow a very classic plot based on extreme
passion and a tragic ending. This suggested that it was possible to adapt
operas in such a way that a basic plot was extracted and used as a short
story. This adaptation was required because operas do not fulfill the re-
quirement of being short and single-plotted. However, basic plots can be
identified in operas.

The translation of the chosen operas has been carried out by the au-
thor in the same way as fables were translated. This translation has sig-
nificantly reduced the content of the operas, much more than for fables.
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Additionally, the personal interpretation of the author, while unintended,
has probably affected the interpretation as well. Section 8.1.2 discusses
this issue.

The exact ratio between the number of kernels and the stories is hard
to set in general because its influence on the generation system depends
on the acquired preconditional rules, the input stories, and the story gen-
eration process human criteria. However, it has been empirically analysed
for this corpus (operas) and for fables. While the mean ratio of appearance
between kernels and stories in the formal version of Aesop’s fables is 0.26,
this ratio raises to 0.4 in the chosen operas. Fables were not useful in
the final prototype and operas were appropriate (as empirically checked).
A deeper study of how to set this ratio a priori is planned as part of the
future work.

The formal version of the opera plots can be examined in Appendix A.

7.2. Implementation

The implementation of the system has been carried out using SWI-
Prolog 5.8.3. Prolog has been the used language and execution system
because:

The rule-extraction algorithm was designed as a generate and test
pattern, and Prolog’s execution algorithm is based on the same pat-
tern.

The rule-extraction algorithm creates rules with variables, and the al-
gorithm finding the particular preconditional links for each evaluated
story binds those variables. Prolog’s engine performs this task.

The evaluation function can only be applied after having found a
valid preconditional network for a story. Prolog’s engine allows for
a natural description of this search in terms of the properties the
preconditional network must fulfill.

Prolog also is well suited to tackle knowledge representation without
the need to use an external formalism, since its data representation system
is based on first order logic predicates, a very typical way for knowledge
representation and the one that has been used for this research. The
implementation of the description of narrations shown in Chapter 3 was
easily implementable in Prolog as a list of logic predicates that represented
actions. Tokens have been represented through the use of atoms.
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7.2.1. Implementation of the Computation of Precondi-
tional Links

The implementation of the program responsible for extracting precon-
ditional links from stories was straightforward because the algorithm was
designed as a generate and test pattern, therefore perfectly matching Pro-
log’s classic programming approaches.

The implementation of this part of the system, the corresponding to
Chapter 5, was divided in two modules: the implementation of the function
for evaluating structural coherence (Section 5.8) and the implementation
of the algorithm for extracting the preconditional links, which is based on
the evaluation function.

According to the algorithmic design, the implementation receives a
story, applies a candidate preconditional network to it, and checks that
the story together with the preconditional network is structurally coher-
ent. If it is not, the system backtracks and tries, for the same story, another
candidate network. The process is repeated until a structurally coherent
preconditional network is found or until there are no more candidates. In
this case, the system cannot satisfy the predicate and the Prolog query
fails.

7.2.2. Implementation of the Preconditional Rules Ex-
traction Algorithm

As it can be seen in the pseudo-code version, the implementation of the
preconditional rules extraction algorithm consists on a search over some
set of candidate sets of causal rules. This search finishes when a set of
rules make it possible to find a coherent explanation for the story.

This part of the implementation corresponds to the algorithms shown
in Chapter 6. Each algorithm shown in that chapter has been implemented
as a predicate (with auxiliary code) trying to match, to the possible extent,
the high level conceptual definition. This has not been always possible:
for instance, for loops, which are not present in Prolog, have been imple-
mented with forall predicates. However, the algorithms have been coded
in such a way that they are very similar to pseudo-code. Clarity has been
preferred over brevity and efficiency.

7.2.3. Optimization of the Implementation

Experiments are focused from the perspective of applicability. Since
criteria about structural coherence is strongly involved in the evaluation
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of the quality of this work, taking into account human opinion is a re-
quirement. Thus, the experiments have been designed to be as much
user-friendly as possible, as that has been considered to be a requirement
to ease testing.

As a crucial part of this requirement, the experimentation has to be
performed in such a way that the user who is experimenting does not
have to wait too much time to receive the next question. Since the model
is designed to solve search problems which are slow, the implementation
needed to be optimized.

The algorithmic optimization shown in previous chapters regarding the
reduction of the space to be traversed was aggressive enough to allow
for experimentation in which stories were analysed to find preconditional
rules in real time. Before those optimizations were realized, a particular
optimization of the implementation was carried out: memoization.

Memoization is a programming pattern in which computed results from
functions are stored to avoid computing the same values more than once.
Memoization is specially useful when computing these results is much
more expensive in terms of time than storing and retrieving the previously
computed values [Michie, Donald, 1968].

Memoization has improved the execution times during the experiments
because of its iterative definition. Since preconditional links must be gen-
erated many times, it is often the case that the same set of links must be
processed. Through memoization the computation for a given input is only
executed once, therefore saving computation time.

7.3. Simple Story Generation

To check that the system is acquiring preconditional rules in an appro-
priate way, the experiment generates short stories based on the rules that
have been collected so far. In this way, human criteria about the generated
stories can be queried and therefore that can serve to indirectly assess the
quality of the extracted rules. More details about the relation of this stage
with the rest of the model are given in Section 6.3.3. In that section it
was introduced that the particular implementation of the story generation
system does not affect the model (that is, it is seen from a black-box per-
spective), but the current set of rules must be taken into account for the
iterations to refine the set of rules.

The proposed story generation system is straightforward and simple.
It must be taken into account that pure story generation is not the focus
of this research, therefore this approach to automatic storytelling can be
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easily improved. However, this is left as future work (Chapter 9).
Referring back to Section 3.5, the space of stories was defined as a set

where all possible stories were included. The restriction making S finite
requires to determine the value for the parameters constraining that set,
δ, µ and π: the valid tokens, the maximum number of actions per story
and the set of valid candidate pattern actions, respectively.

According to this, the values for these parameters must be compatible
with the domain whose rules the system is to acquire. In this implementa-
tion of the model, simplified opera plots are the target, so the parameters
for the set Sopera, the set of operas, are defined in the next list:

δopera, the set of entities, is set to {violetta, alfredo, germont, annina}.
This is just a set of logic atoms and no additional meaning is assigned
to them. They are named after the main characters from La Traviata,
the Verdi’s opera.

µopera, the maximum number of facts per story is set to 10. No opera
plot in the corpus of short versions of operas is longer, so this value
was chosen in order to generate stories alike.

πopera, the set of candidate pattern actions, is set to be the same as
the pattern actions in the input domain. The kernels, along with their
meaning and their respective allowed patterns actions are shown in
Table 7.1.

With this definition of the set Sopera, and according to Equation 3.2, the
size of this set can be computed. This computation is shown in Equation
7.1.

|Sopera | = (7.1)
|Sδopera ,πopera ,µopera | =

µopera∑
i=1

τ(δopera , πopera)i =

10∑
i=1

220i = 2.6681 × 1023

Even with the severe imposed restrictions, this is a too big number to
generate the whole set. However, the point is not to generate the whole
Sopera set, but to generate one of its two partitions according to Section
3.5.2: the G set.
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Kernel Pattern facts Meaning

ill ill(_) The character is ill,
without chance of being

cured.
die die(_) The character dies.
back back(_) The character is back.
love love(_, _) The characters love each

other.
jealous jealous(_, _) The first character fells

jealous towards the
second.

breakup breakup(_, _) The first character breaks
up with the second.

escape escape(_, _) Both characters escape.
together together(_, _) The characters are

together as a couple.
forgive forgive(_, _) The first character forgives

the second.
despise despise(_, _) The first character fells

despise towards the
second.

help help(_, _) The first character helps
the second to reach her

main objective.
kill kill(_, _) The first character kills

the second.
chase chase(_, _) The first character chases

the second to harm or
imprison her.

forces forces(_, _) The first character forces
to second to do something
she does not want to do.

want want(_, _) The first character loves
the second, but the

second does not love the
first.

kidnap kidnap(_, _) The first character
kidnaps the second.

Table 7.1: List of 16 verbs for the sample story generation. This list defines
πopera. The symbol _ represents any variable in the set {x?, y?, z?, w?},
corresponding to the three elements in δopera.
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It is not possible to know a priori which elements fall in the set G (this
research would be useless if that was possible), and the rules that generate
only elements belonging to that set are the objective of this system. Previ-
ous research shown that partitioning a set like Soperas in “good” and “bad”
subsets yields a “bad” set, B, much bigger than G [León and Gervás, 2010].
Uninformed traversal of the whole set, then, yields many more bad stories
than good ones. However, it can be hypothesized that story generation
based on this approach can be improved by adding some heuristics or
using better traversal functions.

The proposed story generation informs the traverse operation by the
application of the gathered preconditional rules. That is, instead of gen-
erating candidates without any restriction, only those candidates which
can later satisfy the acquired preconditional rules are created. Since these
rules have been collected by the application of the acquisition model from
structurally coherent stories (assuming that every story in the corpus is,
indeed, coherent), the rules should capture, to some extent, coherent nar-
rative schemas. The tests for this hypothesis are detailed in next sections.

7.3.1. Rule Application

The way in which collected preconditional rules are applied to perform
story generation is very straightforward. It has been done in this way
because pure story generation is not the research focus, so a simplistic
approach was considered to be better suited for the current purposes.
Iteratively, a rule is randomly chosen from the set of rules. Then, it is
instanced with a token from the δ set (in this instance, δopera ).

The instantiation of the variables in the pattern actions of the precondi-
tional rules (x? or y? in take(x?, y?) � drop(x?, y?)) is done randomly, but it
is important to take into account that rules in the set share variables and,
therefore, they share them as well when those are instanced to tokens. For
instance, in the next case in which the set of preconditional rules contain
two rules:

love(x?, y?) � jealous(x?, y?)
go(x?, z?) � remember(x?, z?)

After the first rule is instanced, both the x? and y? variables get uni-
fied. Therefore, and although the second rule has not been used yet, it is
partially instanced as well. The resulting set of preconditional rules after
binding x? to violetta and y? to alfredo would be this one:
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love(violetta, alfredo) � jealous(violetta, alfredo)
go(violetta, z?) � remember(violetta, z?)

After a rule has been chosen from the set and it has been instanced
using any valid set of tokens, as previously exemplified, the preconditions
of the rule are checked at the current point of the story. If all the actions in
the precondition are present in the story generated so far, the conclusion
is added to the story.

Before computing whether the story is complete or not, the implemen-
tation makes use of the “bad” rules to check that there are no structural
patterns satisfying any of these “bad” rules. For instance, if the gen-
erative process using the set of “good” rules generates . . ., die(alfredo),
take(alfredo, something) and there exists the “bad” rule die(x?)�take(x?, z?),
it is identified that the story is not structurally coherent and it is discarded.

After checking that no bad rules can be applied to the story, the struc-
tural coherence for the partially generated story is tested (according to the
definition shown in Chapter 5). If the story happens to be structurally
coherent, it is considered a complete one and it is yielded as a new story.

Randomly choosing preconditional rules to generate content could lead
to the generation of the same story more than once per execution. This is
avoided by including a set of visited stories containing all stories that have
been generated so far. If the new story is already a member of this set, it
is discarded and a new one is created.

7.3.2. Simple Surface Realization

Non experts cannot read opera plots rendered in the proposed formal
representation without being first trained, which is too costly and leads to
errors. However, the generated short operas are not internally represented
in natural language (this is beyond the scope of this research). To bypass
this limitation, simple surface realization based on trivial patterns has
been used.

A mapping function receiving an individual fact and returning a string
corresponding to its translation to a natural language representation has
been created. The translation patterns themselves have been written by the
author, who assigned the meaning to kernels. Following a pattern-based
approach and slightly polishing the way in which entities and verbs are
dumped into text strings, readable versions of the operas can be created.
These are repetitive and simple, but they can be understood by external
evaluators without any previous explanation.
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To translate a whole opera, every action is first converted. Then the list
of facts is joined keeping the same order in the short plot and separated
by stops. For instance, Formal Story 7 would be rendered as Story 11 in
English, and as shown in Formal Story 10 in Spanish3.

ill(violetta)
love(violetta, alfredo)

together(alfredo, violetta)
forces(germont, violetta)
breakup(violetta, alfredo)
despise(alfredo, violetta)
forgive(alfredo, violetta)

die(violetta)

Formal Story 7: “La Traviata” in formal representation.

Violetta padecía una grave enfermedad. Violetta y Alfredo se querían
con locura. Alfredo y Violetta eran novios. Germont forzó a Violetta
a que hiciera lo que no quería. Violetta abandonó a Alfredo. Alfredo
mostró su desprecio hacia Violetta. Alfredo, finalmente, perdonó a
Violetta. Violetta murió, trágicamente.

Story 10: “La Traviata” after simple surface realization, in Spanish as
originally generated.

This surface realization is admittedly very poor. Several systems per-
forming surface realization for different languages already exist in litera-
ture [Elhadad and Robin, 1996, Gervás, 2007, Gatt and Reiter, 2009], and
most of them can be used without problems. However, not being the fo-
cus of this research, proper surface realization is proposed as future work
(Chapter 9).

3The surface realizer performs the translation in Spanish, this version has been trans-
lated to English by the author from the original version.
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Violetta was terribly ill. Violetta and Alfredo loved each other passion-
ately. Alfredo and Violetta lived together. Germont forced Violetta to
do something that she did not want to do. Violetta left Alfredo. Alfredo
showed his despise towards Violetta. Alfredo, finally, forgave Violetta.
Violetta died, tragically.

Story 11: “La Traviata” after simple surface realization, after being
translated to English by hand from the text shown in Story 10.

7.4. Adjusting Values for Parameters in the Im-
plementation

The presented algorithms and models in Chapters 3, 5 and 6 are defined
in terms of some parameters. In order to adjust the experiments and to
allow a fast execution, these have been assigned by hand. Apart from
the definition of the sets involved in the definition of the domain, which
has been explained in Section 7.3, the parameters used to tweak rule
acquisition are explained in this section. These parameters are introduced
in 6.1.1.

The first parameter to be examined is n, which is the maximum number
of allowed pattern actions in the precondition of the preconditional rules.
This value ranges between 1 (a preconditional rule without precondition
makes no sense) and the length of the longest story minus 1.

The execution of the experiment was carried out having set n to 2. Ac-
cording to the definition of the algorithms, the preconditional rules are
searched first against all preconditions of size 1, then all preconditions of
size 2, then those of size 3, and so on. Therefore, it means that setting a
value higher than 2 would be useless if a valid candidate is found when
the loop in the algorithm is creating rules with two preconditions. Even
if n was set to 3 or higher, the result would have been the same. Other
implementations in which the preconditional rules were generated as can-
didates following a different order would require a deeper study of the best
approach to setting the value for this parameter.

The number of kernels is v. This value for this parameter is directly
computed by counting the number of kernels in the set π.

The number of possible patterns of variables per kernel that form the
pattern actions for creating rules is p. The way in which the assignment
of the variables is computed by the algorithm makes it automatically set.
Since the number of tokens δopera is translated to a corresponding set of
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variables and these are assigned according to the layout of token in the
actions in the story, the value of p is fixed and, in this implementation, it
cannot be set by hand (other approaches could have changed this). The
value of p is, then, 1 in this experiment. This has severely reduced the cost
of the search for preconditional rules, on the other hand it has restricted
the number of different rules that could make it possible to generate co-
herent stories.

The vp parameter represents the maximum number of actions that are
examined backwards when looking for candidate pattern actions for creat-
ing a new preconditional rule. The value of this parameter does not affect
the system as long as it is over a minimum. That is, if the system cannot
find an appropriate action for evaluating a story as structurally coherent,
it returns an error. As long as vp is able to cover a minimum set of previous
actions in the story so that this can be found, the value acceptable.

Since the algorithm always takes the first solution as the output, raising
vp to be higher than this minimum value is useless. As the algorithm
for finding preconditional rules was improved in terms of efficiency and
execution speed is not the main purpose of this experiment, vp was set to
be equal to the length of the longest formal opera. In this way, it is ensured
that the parameter does not affect the results. It would have been possible
to adjust it to be lower and the execution would have worked, but it was
considered that finding this value was not necessary.

7.5. Execution Example

In order to clarify a real execution of the proposed validation process,
an example of the learning procedure is shown. It tries to detail the experi-
ment with the intention of showing through the example how the algorithm
works, in this way completing the exposition of the tests.

The next commented execution log is the test carried out by a female, 28
years old, native Spanish speaker with no particular studies on narrative
nor on Computer Science. The text, generated by the simple templates by
computer in Spanish, have been translated to English by the author, it is
assumed that the loss of meaning is not significant since the content is
very similar. To make this assumption only the knowledge of Spanish and
English of the author, the responsible for the translations, has been taken
into account. The chosen corpus for this test is the one shown in Section
7.1.3, operas.

The experiment started by giving the user short instructions about what
she was about to see and what she was supposed to do. These were orig-



7.5. EXECUTION EXAMPLE 135

inally written in Spanish because all the human evaluators are Spanish.
The corresponding English translation can be read in Figure 7.1.

You are about to be presented short story plots that you can probably recognize

as opera plots. These are written in simple Spanish, and they have been

generated by a computer. The facts in the story are ordered by time.

This experiment tries to generate coherent stories. A story is coherent if it is

completely understandable (i. e. everything happens for a logic reason), it

finishes with a clear, logic ending, and everything in the story is relevant (i. e.,

there is no spurious content).

Don not pay any attention to any other feature of the stories. It is not important

whether it is interesting or not, only coherence is being evaluated.

All you have to do is to answer yes is you think this story is coherent and no

otherwise, according to the previous definition of coherence. The experiment

will automatically finish after having evaluated some stories.

Figure 7.1: Instructions for carrying out the test.

The initial set of preconditional rules for coherence is extracted from
the base corpus of operas by the execution of the algorithms shown in
Chapter 6. Initially, the set of rules for non-coherent relations is empty
because “non-coherent” human written stories are not used. This is due
to the fact that non-coherent stories in the sense used in this research are
not available, at least not in the same proportion as coherent stories.

This rule-set collected from the extraction of preconditional links (and
then, rules) is shown next:

breakup(x?, y?) � back(x?)
breakup(x?, y?) ∧ together(y?, x?) � back(x?)

back(x?) ∧ ill(x?) � die(x?)
breakup(x?, y?) ∧ love(x?, y?) � die(x?)
chase(x?, y?) ∧ love(x?, y?) � die(x?)
chase(z?, y?) ∧ kill(y?, z?) � die(x?)

despise(y?, x?) ∧ forgive(y?, x?) � die(x?)
kill(x?, y?) ∧ love(x?, y?) � die(x?)
kill(x?, z?) ∧ love(x?, y?) � die(x?)
back(x?) ∧ together(x?, z?) � die(y?)

root � ill(x?)
escape(x?, y?) � breakup(x?, y?)
forces(z?, x?) � breakup(x?, y?)
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jealous(y?, x?) � breakup(x?, y?)
love(x?, y?) � breakup(x?, y?)
want(y?, z?) � breakup(y?, x?)
breakup(y?, x?) � chase(x?, y?)

root � chase(z?, y?)
escape(y?, x?) ∧ kill(y?, a?) � chase(z?, y?)

root � chase(z?, a?)
forces(x?, y?) � chase(a?, x?)

ill(x?) ∧ breakup(x?, y?) � despise(y?, x?)
help(y?, x?) � escape(x?, y?)
love(x?, y?) � escape(y?, x?)
kidnap(z?, y?) � forces(x?, y?)
chase(z?, y?) � forces(z?, x?)
together(y?, x?) � forces(z?, x?)
love(x?, y?) � forgive(y?, x?)
kill(x?, z?) � help(y?, x?)

chase(z?, a?) � forces(z?, x?)
forces(z?, x?) � jealous(x?, y?)
love(y?, x?) � jealous(y?, x?)

root � kidnap(z?, y?)
chase(a?, x?) ∧ love(x?, y?) � kill(z?, y?)

jealous(x?, y?) � kill(x?, y?)
root � kill(x?, z?)

forces(z?, x?) � kill(x?, z?)
root � kill(y?, z?)
root � kill(y?, a?)
root � love(x?, y?)
root � love(y?, x?)

root � together(x?, z?)
root � together(y?, x?)

love(x?, y?) � together(y?, x?)
root �want(y?, z?)

After acquiring rules for the system against stories in Appendix A, the
obtained set of rules (the process can be examined in Chapter 6) is used
for the simple pseudo-random story generation, shown in Section 7.3. The
set of obtained rules can be examined in the previous rule-set.

After this story was generated (it can be read in Formal Story 8) and
flushed to the screen, the user was asked if she considered that the story
was coherent. She answered, according to her interpretation, y, “yes”.
Although the exact meaning of the verbs was clearly explained, she under-
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stood that Germont forced Violetta to act like jealousy, and then she died
of grief. It was decided to let her own interpretation drive the experiments
so that the system gathered and classified the acquired rules according to
the user’s criteria.

love(violetta, alfredo)
together(alfredo, violetta)
forces(germont, violetta)
jealous(violetta, alfredo)
kill(violetta, alfredo)

die(violetta)

Formal Story 8: First story generated in the execution of the test.

After the user had classified the story, the rule extraction algorithm is
run again for this generated story and a new set of rules is obtained. Since
the story has been marked as coherent, the new set of rules is merged with
the one obtained when the experiment started because this original set
only contains rules for coherent preconditional links. The new set of rules
that will be added to the previous one is next:

kill(x?, y?) � die(x?)
together(y?, x?) � forces(z?, x?)
forces(z?, x?) � jealous(x?, y?)
jealous(x?, y?) � kill(x?, y?)

root � love(x?, y?)
root � together(y?, x?)

Redundant rules are not added to the set of learnt rules since it is
useless. Therefore, only new rules, those which are not previously included
in the set are inserted. In this case, the only new rule is:

kill(x?, y?) � die(x?)

This rule is then merged with the previous set by performing a simple
inclusion. Then, with the set of rules resulting from the merge, a new story
different from the input set is generated. The generation system keeps a
record of the stories generated so far, so that they will not be generated
again. Although it is not explicitly shown in this example, there are cases
in which the generated story only involved rules that have been already
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ill(violetta)
love(alfredo, violetta)

jealous(alfredo, violetta)
breakup(violetta, alfredo)
despise(alfredo, violetta)

Formal Story 9: Story rated as non-coherent by the user during the
tests.

learnt so the classification is carried out but no new content is added to
any set of preconditional rules (“good” or “bad”). The generated story is
shown in Formal Story 9.

The user, now, answers n, “no”. She considers that the story lacks
coherence, so some information must be extracted from the story so that
the set of rules evolves. Therefore, the rule extraction algorithm is executed
on this story, yielding the next set of rules:

root � ill(x?)
jealous(y?, x?) � breakup(x?, y?)

ill(x?) ∧ breakup(x?, y?) � despise(y?, x?)
love(y?, x?) � jealous(y?, x?)

ill(x?) � love(y?, x?)

This set of rules represents what should not be generated. However,
there are conflicting rules: some of them are present in the set of rules for
coherent plots, so these are given preference. In this way, the only rule
identified as creating non-coherent stories is:

ill(x?) � love(y?, x?)

The experiment goes on by presenting more stories to the evaluator
and storing her answers. In total, 22 stories were needed to reach a point
in which stories were evaluated always as coherent: 16 stories rated as
coherent by the user and 6 stories rated as non-coherent. When 5 stories
were considered coherent, the experiment finished, considering that the
system has acquired enough rules and most stories are correct.

The sequence of classfications is represented in Figure 7.2.
In order to represent more graphically the evolution of criteria about

the generated stories, it is possible to represent the proportion between
coherent and non-coherent stories for the last 6 generations.
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Figure 7.2: Learning curve from the execution example.

The final rule-set of preconditional rules for story processing can be
read next. As the model introduces, two subsets of rules have been ex-
tracted: a set of rules for coherent relations, and a set of rules for non-
coherent ones.

breakup(x?, y?) � back(x?)
breakup(x?, y?) ∧ together(y?, x?) � back(x?)

escape(x?, y?) � back(y?)
back(x?) ∧ ill(x?) � die(x?)
ill(x?) ∧ kill(x?, z?) � die(x?)

breakup(x?, y?) ∧ love(x?, y?) � die(x?)
chase(x?, y?) ∧ love(x?, y?) � die(x?)
chase(z?, y?) ∧ kill(y?, z?) � die(x?)

despise(y?, x?) ∧ forgive(y?, x?) � die(x?)
kill(x?, y?) � die(x?)

kill(x?, y?) ∧ love(x?, y?) � die(x?)
kill(x?, y?) ∧ love(x?, z?) � die(x?)
kill(x?, z?) ∧ kill(z?, y?) � die(x?)
kill(x?, z?) ∧ love(x?, y?) � die(x?)

kill(y?, z?) � die(x?)
kill(z?, x?) ∧ love(x?, y?) � die(x?)

root � die(y?)
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back(x?) ∧ together(x?, z?) � die(y?)
breakup(y?, x?) ∧ love(x?, y?) � die(y?)
escape(z?, y?) ∧ love(x?, y?) � die(y?)
kill(y?, x?) ∧ together(x?, y?) � die(y?)

want(z?, y?) � die(y?)
root � ill(x?)

die(x?) ∧ escape(x?, y?) � breakup(x?, y?)
escape(x?, y?) � breakup(x?, y?)
forces(z?, x?) � breakup(x?, y?)
help(z?, y?) � breakup(x?, y?)
jealous(y?, x?) � breakup(x?, y?)
love(x?, y?) � breakup(x?, y?)

forces(z?, x?) ∧ love(x?, y?) � breakup(y?, x?)
forces(z?, y?) � breakup(y?, x?)

forces(z?, y?) ∧ love(x?, y?) � breakup(y?, x?)
want(y?, z?) � breakup(y?, x?)

forces(x?, y?) ∧want(x?, y?) � breakup(y?, z?)
breakup(y?, x?) � chase(x?, y?)
forces(y?, x?) � chase(y?, z?)

root � chase(z?, x?)
together(y?, z?) � chase(z?, x?)

root � chase(z?, y?)
despise(y?, z?) ∧ love(x?, y?) � chase(z?, y?)
escape(y?, x?) ∧ kill(y?, w?) � chase(z?, y?)

root � chase(z?, w?)
forces(x?, y?) � chase(w?, x?)

ill(x?) ∧ breakup(x?, y?) � despise(y?, x?)
jealous(y?, x?) � despise(y?, x?)
want(x?, y?) � despise(y?, x?)
kill(y?, z?) � despise(y?, z?)

root � escape(x?, y?)
help(y?, x?) � escape(x?, y?)
kill(x?, z?) � escape(x?, y?)
love(x?, y?) � escape(y?, x?)
kill(z?, x?) � escape(z?, y?)

root � forces(x?, y?)
help(z?, y?) � forces(x?, y?)
kidnap(z?, y?) � forces(x?, y?)

root � forces(y?, x?)
chase(z?, x?) � forces(z?, x?)
chase(z?, y?) � forces(z?, x?)
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chase(z?, w?) � forces(z?, x?)
together(y?, x?) � forces(z?, x?)

root � forces(z?, y?)
die(y?) � forces(z?, y?)

want(z?, y?) � forces(z?, y?)
love(x?, y?) � forgive(y?, x?)

root � help(x?, y?)
kill(x?, z?) � help(y?, x?)
love(x?, y?) � help(y?, x?)
love(z?, y?) � help(z?, y?)
want(z?, y?) � help(z?, y?)

forces(z?, x?) � jealous(x?, y?)
root � jealous(y?, x?)

forces(z?, y?) � jealous(y?, x?)
love(y?, x?) � jealous(y?, x?)
kill(z?, x?) � kidnap(x?, y?)

root � kidnap(z?, y?)
root � kill(x?, y?)

jealous(x?, y?) � kill(x?, y?)
root � kill(x?, z?)

forces(z?, x?) � kill(x?, z?)
love(y?, z?) � kill(x?, z?)

jealous(y?, x?) � kill(y?, x?)
root � kill(y?, z?)

help(y?, x?) � kill(y?, z?)
want(z?, x?) � kill(y?, z?)

root � kill(y?, w?)
root � kill(z?, x?)

chase(z?, x?) � kill(z?, x?)
despise(y?, x?) � kill(z?, x?)

forces(z?, x?) ∧ love(x?, y?) � kill(z?, y?)
root � love(x?, y?)

chase(y?, z?) � love(x?, z?)
root � love(y?, x?)

despise(y?, x?) � love(y?, z?)
die(y?) � love(z?, y?)
root � together(x?, y?)

escape(x?, y?) ∧ love(x?, y?) � together(x?, y?)
root � together(x?, z?)
root � together(y?, x?)

love(x?, y?) � together(y?, x?)
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root � together(y?, z?)
back(y?) ∧ love(x?, y?) � together(z?, y?)

root �want(x?, y?)
forces(x?, y?) ∧ kidnap(x?, y?) �want(x?, y?)

root �want(y?, z?)
root �want(z?, x?)
root �want(z?, y?)

help(x?, y?) �want(z?, y?)

Next rule-set contains all the acquired non-coherent rules during the
execution of the experiment.

breakup(x?, y?) ∧ love(x?, y?) � die(x?)
breakup(z?, x?) ∧ love(x?, y?) � die(x?)
despise(x?, z?) ∧ forces(z?, x?) � die(x?)
despise(y?, x?) ∧ forgive(y?, x?) � die(x?)

root � ill(x?)
escape(x?, y?) � breakup(x?, y?)
forces(z?, x?) � breakup(x?, y?)

despise(y?, x?) ∧ love(x?, y?) � breakup(y?, x?)
help(z?, y?) � breakup(z?, x?)
love(x?, y?) � despise(x?, z?)

ill(x?) ∧ breakup(x?, y?) � despise(y?, x?)
jealous(y?, x?) � despise(y?, x?)
help(y?, x?) � escape(x?, y?)

ill(x?) ∧ kill(z?, y?) � forces(z?, x?)
together(y?, x?) � forces(z?, x?)
love(x?, y?) � forgive(y?, x?)
kill(y?, z?) � help(y?, x?)
want(z?, y?) � help(z?, y?)
root � jealous(y?, x?)
root � kill(y?, z?)

want(z?, x?) � kill(z?, y?)
root � love(x?, y?)
ill(x?) � love(y?, x?)

love(x?, y?) � together(y?, x?)
together(y?, x?) �want(z?, x?)

root �want(z?, y?)

However, these rules are not definitive since several rules included in
this set conflict with rules in the set of rules for coherent stories. These
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are removed from the non-coherent set and the next one is obtained as the
definitive set.

breakup(z?, x?) ∧ love(x?, y?) � die(x?)
despise(x?, z?) ∧ forces(z?, x?) � die(x?)

despise(y?, x?) ∧ love(x?, y?) � breakup(y?, x?)
help(z?, y?) � breakup(z?, x?)
love(x?, y?) � despise(x?, z?)

ill(x?) ∧ kill(z?, y?) � forces(z?, x?)
kill(y?, z?) � help(y?, x?)
want(z?, x?) � kill(z?, y?)
ill(x?) � love(y?, x?)

together(y?, x?) �want(z?, x?)

The whole experiment took approximately 8 minutes and a half. This
means an average time of 25 seconds per story, approximately. Although
the creation of the rules by hand from the same domain has not been car-
ried out, it is claimed that this pseudo-automatic process is much faster,
based on experience. Therefore, the solution is promising according to its
objectives. At least, for simplistic domains as the one that has been tested.
It is planned to study more complex domains as part of the future work.

7.5.1. Saturation

A limit for the experiment has been imposed: once the user reaches a
point where most stories are rated as coherent, the experiment stops. It
can be seen in the previous section that this limit has been set to 5. This
is because during the early tests a saturation level was discovered.

After some classifications, the current procedure is unable to extract
more rules in a robust way. While it is possible to find more rules, this does
not happen as fast as in the first stage (non-saturation) of the execution.
It was empirically found that once 5 or 6 stories in a row are rated as
coherent, the probability of being in the saturation stage is quite high, so
it was decided to stop the experiment once this happens.

Saturation happens because of the experimentation system itself, the
abstract model for gathering rules is not creating the saturation. The way
in which modifications are made to generated stories to create new ones
has a limit. In order to keep resemblance with the stories that can be
generated by only applying rules, some constraints are cutting too many
possibilities. The amount of different patterns it can create is small, there-
fore eventually exhausting this set of patterns. The proposals for future
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work, in Chapter 9, examine other possible approaches to story generation
in order to overcome this limitation.

7.6. Overall Results

In order to evidence that useful domain information can be extracted in
general, and not only in one single case, the test explained in the previous
section was repeated for other subjects. In total, the test was run for 14
people (including the subject from the previous example). Their age ranged
between 25 and 60 years old, and all of them are native Spanish speakers,
so the surface realization for stories was only implemented for Spanish. It
is considered that the messages are so simple that the particular natural
language is not affecting the identification of coherence, although discus-
sion is pertinent about this matter (Section 8.1.6).

The test was run once per each human evaluator. Each experiment fin-
ished when the saturation zone was reached. The experiment was stopped
at that point and the evaluator was not asked to run the test again. There-
fore, 14 experiments have been executed. The statistical data graphically
shown in 7.3 is acquired from that number of experiments, then.

Elapsed time to reach saturation was also measured. If acquiring rules
pseudo-automatically for some domain is slower than doing it by hand, the
use of the solution becomes discussable. The mean elapsed time was 8.78
minutes, with a standard deviation of 2.752. The fastest classification took
4.224 minutes and the slowest one took 13.407 minutes.

The average time per story was 26.20 seconds with a standard deviation
of 7.02.

Regarding the comparison against crafting the rules by hand, it has to
be taken into account that the proposed system is able to generate a set of
rules from some input corpus without human intervention, if it is desired.
While it has been shown how this approach would be incomplete, it is clear
that the benefit in terms of time is noticeable.

Figure 7.3 shows the average structural coherence refinement process
from all the evaluators. It can be seen how the proportion between coherent
and non-coherent stories is almost lineally raised during the execution of
the tests.

It is assumed that the content of the stories is affecting the execution,
that is, not every type of plot or any input set would yield these results. The
reasons for this are explained in this chapter, mainly in Section 7.1. While
the results are promising and the empirical results shows that pseudo-
automatically acquiring rules is possible, the application of this approach
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Figure 7.3: Average proportion of coherent vs. non-coherent stories during
the refinement process. The relation between the last 5 stories is shown.

to other domains (mainly more complex ones) is planned as part of the
future work.

For instance, if the tests are run using just one story as corpus, the
learning process will be much faster, as it can be seen in Figure 7.4. While
it is just an example and, depending on the evaluator and on the input
story it does not have to happen in all cases, the learning process is quite
straightforward because all the generated stories are coherent according to
human criteria. This is just because acquiring rules from one single story
leads to a rule-set that only creates stories very similar or even only equal
to the source story (which is coherent a priori). This is one of the cases in
which this approach is not really useful: more stories are needed.

7.7. Chapter Summary

This chapter details the implementation of the theoretical model de-
scribed in the previous chapters. Additionally, it shows the experiments
that have been run with that implementation to prove, to the possible ex-
tent, that the main hypotheses are plausible. Graphical depiction of some
executions are shown as well.
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Figure 7.4: Example result of the rule acquisition process when using one
single story as input corpus.



Chapter 8

Discussion

This chapter discusses all those decisions that have been taken during
the development of this research, trying to show the justification of

having chosen them. Given the characteristics of the current research,
some assumptions are subject to discussion because they are outside the
pure formal or computational domain. While some of them are hard or
impossible to demonstrate with absolute certainty, this part of the disser-
tation tries to show that, at least to some extent, the taken approach is
useful according to the current focus of the development.

This chapter have been thematically organized, instead of keeping the
order followed in the previous chapters. It has been considered that a
chapter devoted to discussion is better understandable with such a layout.

8.1. Conceptual Aspects of the Current Approach

This research is based on an adoption of a structural focus to compu-
tational narrative processing. Therefore, the extent to which this is really
useful and plausible from a conceptual point of view must be discussed.

The main assumption in this research is that empirical results are valid,
and the fact that the modelled method does not mimic human psycholog-
ical processes is not influential. As introduced in Chapter 1, the reduced
knowledge available about underlying human mental processes on nar-
rative makes it very difficult to implement systems that really replicate
humans.

147
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8.1.1. Number of Used Stories in the Rule-Extraction Pro-
cess

Algorithm 3 only learns from one single story. While results show
useful outputs (Chapter 7), the system could learn content from more than
one story. This would be beneficial in principle because there is implicit
content in the set of stories that could be extracted, not only in the stories
individually. For instance, the system could extract a rule ra from a story
sa and a rule rb from the story sb. Taken independently, ra and rb could be
useful, but they could be incompatible together.

Since the rule extraction algorithm must return a single set of rules,
these must be coherent as a set, and not only independently. So far, the
rule extraction process only ensures coherence for single stories.

While developing the modification of the algorithm to make it able to
process more than one story, the search space became much bigger. Be-
cause of the exponential nature of the solution based on search, adding
more candidates made the problem intractable again. Additionally, ex-
tracting rules from the whole corpus at once turned the system into a
non-scalable one, because adding more stories to the corpus would make
the search space grow exponentially instead of growing lineally. This is
why it was decided to process one story at a time. However, apart from the
execution cost, nothing prevents from analysing more than one story.

8.1.2. Impact of the Input Corpus in the Final Results

The chosen set of input stories affects the overall results of the exper-
iments shown in Chapter 7 because they are the base for the generated
stories. Different corpora would create different stories with different char-
acteristics. While it is assumed that the resulting rules will depend on the
input content, it is important to discuss the way in which the quality of the
results is affected by the process of creation of the corpus.

In the particular implementation that has been shown, operas have
been summarized and translated to a formal version by hand, which has
introduced the author’s criteria in the execution. It makes sense then to
question if the author’s knowledge has influenced the results.

According to this, the summarization and translation of human-written
stories to formal representation processable by the algorithm is considered
to be one of the main drawbacks detected in the development of this re-
search. In this stage, author’s knowledge and intuition have admittedly
influenced the whole process. In the instantiation of the model for operas,
the real libretto is very different from the outline, and even the outline of the
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events taking place in the opera are inherently different from their formal
version.

While other summaries for the operas and other possible formalizations
would have been possible and they would have possibly led to different
values, it is claimed that, since the influence of the author’s knowledge
takes place in the first stage only, the quality of the results is not really
affected because it is driven by external humans’ opinion. That is, if the
stories coming from the author’s translation were totally non-coherent, the
rules acquired by the algorithm would create non-coherent stories as well.
On the other hand, if coherence in the input stories led to coherent results,
all generated stories in the rule-gathering process would lead to acceptable
stories always, which is not the case, as it has been shown in Chapter 7.

This does not mean that this translation is the best method, though.
The option of translating the stories by hand was chosen to reduce the
needed effort to get the system running. Training other humans to create
short summaries of operas and then having them formalize this outlines
to the required formal representation was not always possible, specially
when the formal model and the computational requirements of the imple-
mentation have been updated several times during the development. If
other individuals had created the processable versions of the stories, they
would have been forced to do it several times and with several formalisms.

External influence on translations, or even pseudo-automatic transla-
tion, which is hypothetically true, would be, in the opinion of the author,
better options for future versions of the proposed system.

8.1.3. Influence of Aspects Different from Coherence in
Classification

As shown in Section 7.5, humans were required to focus on narrative
coherence when rating stories in the experiments. This explicit restriction
was clearly stated in the questionnaire to reduce the influence of other
aspects of stories on the rating. Experience from the work presented in
Chapter 4 showed that the opinion about the overall quality that readers
perceive when they read a story influences the rating of particular vari-
ables. That is, if a reader finds the story funny or interesting, she or he
will consider that the story is good, therefore it is possible to find coherence
in a story that is actually lacking good coherence.

However, it is difficult to measure the extent to which this has been
correctly reached. Since psychological aspects are unavoidably involved
when measuring coherence, and human psychological processes for iden-
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tification of coherence are not completely known, no formal study about
this is possible.

In order to partially address this issue, the model assumes that valida-
tion against human criteria is the best way to evaluation. That is, if human
evaluators rate a story as coherent, the rules are correct. This decision is a
consequence of the structural definition of this work, which tries to avoid
cognitive models. If the stories are not coherent from a narratological or
psychological point of view but evaluators rate it as coherent, it is valid for
the system.

8.1.4. Influence of Human Opinion in the Preconditional
Rule Extraction Process

Establishing a general definition of coherence in stories valid for every
possible story is not possible because particular human opinion is involved
in the process. There is no way of formalizing human opinion and therefore
it does not make sense to give more importance to one opinion over another
in all cases. Therefore, the particular set of human evaluators driving
the rule gathering process explained in Section 6.3 affects the final set of
acquired rules. That is, the final set can be non-valid for other humans.

The results collected in Section 7.6 suggest that the evaluation for co-
herence is reasonably uniform for a simple domain under somewhat re-
stricted conditions, but this does not have to be the case in all scenarios.
It is hypothesized that more complex domains in which the evaluation of
coherence in stories will not be uniform can be found. The study of this
hypothesis and its consequences is targeted as future work.

8.1.5. Good and Bad Stories

Narrations have been divided in the model in two partitions: good and
bad. That is, according to the model, two good stories are not comparable
to each other to test which one is better, they are just good. An analogous
method is followed for bad stories.

From a cognitive point of view, this is far from complete. Not only stories
can be “good”, “normal” or “very good”, for instance, but also “good” stories
can be considered “bad” as well if several human judgements are taken
into account.

This common aspect of evaluation is only partially addressed as a pos-
sible side effect of the classifications obtained from different human eval-
uators, but the theoretical model does not take this into account. This is
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a limitation of the model, which should be improved in future versions to
take this into account.

On a different tack, the set of “good” stories was defined in terms of co-
herence: structural coherence from the point of view of the computational
system, and coherence as understood by humans in the experiments. It is
accepted that quality is not totally covered by coherence, and both short
and complex plots, even on its high level representation (leaving out literary
aspects), are rated differently about its quality taking into account many
more aspects that only coherence. While it is assumed that coherence is a
basic starting point for describing quality in narrations, the model accepts
this restriction in order to offer a working solution, instead of a broader
but incomplete one. Whether coherence is one of parts of basic quality
is discussable as well, but that discussion is considered to be outside the
scope of this dissertation.

8.1.6. Language for Text Realization

Experiments have been carried out by presenting the stories in natural
language to human evaluators. As all the evaluators where native Spanish
speakers and this was known before implementing the text realization,
simple patterns, the experiments were therefore carried out with texts in
Spanish.

The quality of the texts is low, but the patterns and their joint as a full
story is grammatically correct. No special check about this correctness was
carried out because basic knowledge of Spanish was enough to ensure it.

Both aspects could be discussed regarding text realization: the influ-
ence that the particular way of telling the plots exerts on evaluators, and
the way in which the particular language (Spanish, English or whatever
other language) affects human criteria.

Regarding the first aspect, the influence of the quality of the texts,
it is assumed that the patterns are so simple that no real influence is
being exerted. As a loose test, it was checked during the execution of
the tests that evaluator’s criteria were very similar to the author’s criteria
for every story, with only slight differences. This suggests that the text
patterns created by the author, which had defined the meaning for the
kernels of the actions, expressed what he meant, and that the evaluator
was approximately interpreting the same thing. This is obviously not a
formal check of the assumption, but text realization is not an objective of
this work and it is therefore accepted that the results are valid.

The example of realized story shown in Formal Story 11 shows the text
in English, and the one shown in Formal Story 10 shows the Spanish
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version. It is hard to evaluate their similarities without speaking both
languages, but these examples try to show an evidence (for those who
speak English and Spanish) that the meaning of the realized actions is
very similar in both version.

8.2. Comparison Against Other Approaches

The proposed method is a very particular approach to story generation.
There are, as it has been shown in Chapter 2, many other computational
approaches to narrative. This section compares and discusses those points
in which the comparison is interesting.

8.2.1. Classic Machine Learning and Rule-Gathering Al-
gorithm

To be able to gather rules, the algorithm needs, as input, a set of stories
for use it as a “training corpus”. This corpus, however, must satisfy some
constraints. Any set of texts put together is not enough to make the system
work. The approach is based on narrative structural knowledge that short,
simple narrations contain, not on statistical properties of elements.

Most machine learning algorithms can learn most of the times no matter
the quality of the corpus, the accuracy of the learning depends on the
quality of the corpus. However, the proposed algorithm lacks this ability:
if the input stories are not processable by the evaluation function, nothing
will be learned from them.

On the other hand, the results from this learning process are totally
usable after the acquisition: the set of rules is perfectly readable and mod-
ifiable by humans. Additionally, certain approaches to Machine Learn-
ing have already developed useful techniques for some aspects related
with the current work, like, for instance, acquisition of time relations
[Mani et al., 2006, Bramsen et al., 2006].

The other approach considered worth the comparison is the acquisi-
tion of causal rules from an external knowledge base. The overall benefit
is clear: there is no need of creating a knowledge base, and this saves time
and effort. However, possible options like OpenCyc [CyCorp, 2010] or Con-
ceptNet [Liu and Singh, 2004] have several characteristics which make it
difficult to apply the current approach to evaluation of narrative content,
namely:

Nothing ensures that information about the working domain is avail-
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able on these databases. While they capture (in different ways) com-
mon sense knowledge, some structure may well not be present.

Causality is considered, but not as much developed as in the pro-
posed learning algorithm. Full focus on causality is put in the pre-
sented system (because it is the structure on which the definition
of preconditional link relies), but acquiring robust link information
from these knowledge bases is not simple because that information
is not as abundant as some other type of relations (as existential
properties, for instance).

Multiple links between concepts are hard to find. Cases in which
some fact is the result of the combination of two different facts are
seldom found, and that construct is quite frequent, at least, in the
domain used for the implemented prototype.

Improving the knowledge base for adapting it to new circumstances
(new domains) requires, in the case in which the domain knowledge
is not present, hand-writing rules, which implies the problems pre-
viously analysed.

It is finally concluded that the option of learning the rules is the most
profitable one. Its cost is quite low compared to the option of hand-writing
rules, and it provides a more robust coverage inside concrete domains.
It comes at the cost of developing the learning algorithm (which is not
low), but once this has been created, the adaptation to new domains is, in
principle, straightforward.

But that approach is not perfect, since the results are not optimal and
it is quite sensible to errors. Putting out human supervision carries the
risk of letting the system infer wrong rules, although this supervision can
be obviously done post hoc. Another benefit of this approach is that any
improvement on the learning algorithm can directly benefit all working
domains. The current approach to learning is not the optimal one, but it
can probably be improved for future versions of the evaluation function.

8.3. Discussion related to the Implementation

The implementation of the theoretical model presented in chapters 3, 5
and 6, as detailed in Chapter 7, has involved additional assumptions and
restrictions that have realised the algorithms in a real program. How these
adaptations have affected the collected results is discussed in this section.
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8.3.1. Appropriate Number of Input Stories for the Cor-
pus

For carrying out the presented results, 9 adaptations of operas have
been used. As discussed in Section 8.1.2, it is assumed that the way in
which the input corpus is used does only partially affect the results because
human supervision is what really drives the rule acquisition process.

However, the amount of input stories affects not only the particular set
of rules that is extracted after the execution of the process, but also the
time needed to reach the saturation point. If only one story was used and
this story was coherent, the acquired set of rules used to generate stories
would lead to only one single structure of narrations, very similar to the
original story. Correcting this set of rules through classification of gener-
ated stories would only require to check a few examples (the exact amount
would depend on the length of the story). So the amount of different sto-
ries that can be created is directly proportional to the set of preconditional
rules, which is directly proportional to the number of input stories in the
corpus, a priori.

This does not have to happen always because the actions in the stories
are very influential in the rules. In the most extreme case, the system
could be fed with many copies of the same story, this would be exactly the
same as feeding it with one instance of that story. In the opposite case
each story has a set of actions totally different from the actions in the rest
of input stories. This would lead to many rules, but only one rule for each
action, which would make the iterative process of refining the set of rules
quite slow.

As it has been intentionally carried out in the experimentation, the
pseudo “optimal” case takes place when the availability of several stories
in which the set of actions is not the same, but every actions appears in
several stories with different previous actions. This leads to several rules
for each action, which helps to create instances and to iteratively create a
useful set of “good” and “bad” preconditional rules.

8.3.2. Application of the Structural Information Extrac-
tion Algorithm to Other Domains

Results obtained after this study prove that the gathering of structural
relations in simple stories can be pseudo-automatically acquired. This is
considered an important merit of the research, but further studies must
be carried out in order to prove that the proposed method is valid for other
domains.
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It is well known, as it has been presented in Chapter 7, that the con-
crete set of actions in the input story and the proportion in which they
appear against the amount of input stories in the corpus determine the
final quality of the rule-refinement process, which affects itself the gener-
ative capabilities.

On the one hand, the imposed restrictions about what a simple story is
reduces the scope of the approach. That is, these structural approaches
are not necessarily valid for complex narrative forms like novels, which
are not addressed. Although the study of the inherent differences between
complex narrations and simple stories has not been carried out, many
assumptions that have been made for this work to be feasible are not
satisfied in complex narratives, so the proposed algorithm is quite unlikely
to work in those cases.

On the other hand, short versions of opera plots are not the only possi-
ble input domain. While reduced operas are useful for the particularities
explained in Section 7.1.3, many other domains fulfill the same require-
ments, so they could be used as well, and nothing prevents, in principle,
a successful execution.

The main point, then, is that the definition of “simple story” is quite
restrictive, but that many forms of narrative fall in this category. Fables (if
a good subset of them could be found), tales or short descriptions of travels.
Although future work must address this to prove it, it is hypothesized in
advance that it makes sense to keep on studying the structural analysis of
narrative as a useful computational method.

8.4. Chapter Summary

This chapter discussed the most interesting and conflicting points of
the research. Both the strong parts and the weaknesses of the current
approach are addressed, and future lines of discussion, outside the scope
of this thesis, are proposed.
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Chapter 9

Conclusions and Future Work

This last chapter of the dissertation summarizes the presented work
and proposes different possible further ways in which the explained

research could be improved.
While there is still much to be done in this field (structural approaches

to computational narrative), this dissertation has tried to create a plausible
and useful proposal that can be used, if not for solving problems in the
industry, at least for triggering new research in these terms.

9.1. Summary

All along the previous chapters, these have been the subjects that have
been studied:

The objectives and hypotheses that motivated this work were pre-
sented in the first chapter.

The previous research setting the base for this research was studied
in detail in Chapter 2.

The formal and conceptual definition of narration used in this re-
search has been defined in Chapter 3.

The preliminary work on a computational system for processing nar-
rations based on a semantic approach is then detailed.

A structural approach to computational processing of narrative has
been modelled and described in Chapters 5 and 6.

Then, the implementation, experiments and obtained results are
shown in Chapter 7.
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Finally, the most relevant points are discussed and summarized.

All this dissertation has been written trying to focus on what were
considered the most important ideas and contributions of the research,
without leaving out all the techniques, algorithms and references that base
the work.

9.1.1. Scientific Contributions

The main scientific contributions are summarized in this list:

A formalism for representing narrations, and a definition of simple
narration that is adopted in this work. This is described in Chapter
3.

The development of a knowledge intensive system in which an ex-
plicit evaluation function drives a generative process, and its partial
validation through human supervision (Chapter 4).

The definition of an artificial relation used as schematic unit to per-
form schema acquisition and rule learning, the preconditional link
(Chapter 5).

A set of algorithms for evaluating a story in terms of its structural
properties and for acquiring instances of schemas and rules (Chap-
ters 5 and 6).

A framework for human-supervised acquisition of generation rules
and narrative generation (Chapter 6).

9.2. Conclusions of this Research

This section tries to resume the conclusions that have been gathered
after the obtained results were analysed. The most important part of these
conclusions is the validation –or rejection– of the main hypothesis accord-
ing to the results of the empirical tests.

The hypotheses, defined in Section 1.3, state that a structural approach
to narrative not taking into account cognitive models can be implemented
for some domains in such a way that stories recognizable as such by hu-
mans are generated. It was also hypothesized that the defined structural
properties could be pseudo-automatically acquired.
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After the analysis of the results shown in Chapter 7 it can be concluded
that the hypotheses have been partially validated. Through the implemen-
tation and the tests it has been shown how it is possible to build a system
performing structural processing on narrations that creates stories that
are considered coherent by humans.

The other part of the model, the proposed rule-acquisition algorithm,
has been implemented as well and tested as part of the experiments, so the
second part of the hypotheses, the plausibility of acquiring rules pseudo-
automatically (in the proposed way) has also been partially demonstrated.

A special emphasis is put on the fact that the hypotheses have only
been partially proven. This is considered so because:

The experiments involve human criteria. This means that the evalu-
ation of coherence is only partial, and that many more human eval-
uators could be used to perform a more specific study. However,
due to the prototype characteristics of the implementation, this was
considered unnecessary at this point.

The inherent focus of this thesis is related to narrative, which is a
very complex concept which does not have a fully accepted definition.
Thus, stating that the stories are coherent, while plausible, cannot
be formally proven.

Although only partial validation has been carried out in this research,
the overall conclusion is that the hypotheses, to the possible extent, are
plausible enough to keep on researching on the field of structural process-
ing of narrations in these terms.

9.3. Benefits and Drawbacks

No research project is perfect, and this one is not an exception. This
sections briefly summarizes the main benefits and drawbacks that have
been presented along the exposition of the previous chapters.

It has been concluded that the current contribution reduces, to some
extent, the human effort required to improve the domain of generation of
narratives for an application. While this is considered an obvious benefit, it
must also be made clear that the proposed system, so far, is only applicable
to simple domains and short and plain narrations. While more work could
lead to an improved model providing coverage to more sophisticated forms
of stories, this has not been carried out yet.



160 CHAPTER 9. CONCLUSIONS AND FUTURE WORK

The supervision system is very simple and based on a straightforward
boolean classification. It is claimed that this is a clear benefit because
it is very easy for humans to classify content in this way. Additionally,
such a simple boolean system does not necessarily have to be explicit, it is
hypothesized that this can be queried by other means (although this study
is outside the scope of this research). But this simple classification comes
at a price: only a basic conception of coherence can be gathered using this
method. Interest, for example, is not boolean, there are virtually infinite
levels of interest.

Theoretically, the proposed model covers the full space of solutions for
all the proposed algorithms. This permits a theoretical full coverage of the
solutions, which is good. However, this process has not been feasible in
practice because the spaces are so big that traversing them completely is
not a tractable problem. Therefore, the theoretical advantage is hindered
by the practical limitations of current computational power.

Finally, it is considered that an important part of the contribution is the
proposal of a totally structural paradigm for computationally management
of narrative content. It has been shown how this can be positive with an
original model. But it is hypothesized that, while this could open new
paths for research, it is quite likely that only structural processing will
not be enough by itself, and semantic computation will be required to
achieve really good quality, at least when comparing the stories generated
by computers to those generated by humans.

9.4. Future Work

The previous chapters have defined the bound of this research, leaving
several points as part of the future work. This section summarizes those
improvements on the system or related research lines that are being cur-
rently considered. While there could be many others, these are directly
related and planned as the next issues to study.

9.4.1. Improving the Model for Structural Definition and
Processing of Narrations

It has been empirically shown that structural processing of stories
makes sense, at least for some domains. However, the application of the
proposed approach is not limited to the presented system, and it is hypoth-
esized that more sophisticated and powerful solutions can be developed.
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For instance, the classification of the stories could be improved so that
the evaluation function and the human criteria are not boolean, but range
on some real interval. In this way, plain separation between coherent
and non-coherent stories could be improved and a ranking of stories could
be performed. This would lead to the concept of a story which is “more
coherent” than some other. This was the approach followed in the cognitive
system developed and presented in Chapter 4.

Figure 6.1 shows a diagram of the proposed preconditional rule ac-
quisition method. While it has been proven that it makes sense to build
rule-sets in this way, some improvements can be applied to the algorithm
so that the rule gathering approach is made more powerful. For instance,
the first accepted candidate set of rules is taken as the solution. This is not
necessarily optimal, and more options could be considered. For instance,
it would be possible to select the best candidate based on a non-boolean
classification of story according to their coherence.

The model could be also improved by adding more complex time rela-
tions to the definition of simple stories. The assumptions that were made
are considered to be extremely restrictive. This was done to keep the pre-
sentation of the model simple and focused, but it is hypothesized that the
model in its current form can be applied to stories in which the duration of
each action is higher than a single unit of time, for instance. More complex
time relations would broaden the range of application of the model.

In general, this expansion of the range of stories for which the structural
model is able to give a correct solution must be improved as the next step in
this research for the system to be really useful. It is assumed that humans
handle stories that are much more complex than those presented in this
dissertation, and reaching, at least partially, that expressive power is a
very important –and, perhaps, ambitious– objective that, in the opinion of
the author, should be targeted.

9.4.2. Improved Story Generation

The rule-acquisition method is based on creating candidate stories that
are classified under supervision. The quality of the story generation sys-
tem affects both the required time to reach the saturation point in the
experiments and the capabilities of finding new rules.

As it has been designed, the acquisition process can only collect the
preconditional rules that are implicitly present in the input stories because
no new possibilities are included. The saturation point is reached when
there is nothing new to “learn”, that is, a local maximum regarding the
preconditional rules has been hit. In order to avoid this, noise could be
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introduced in the model.

That is, to be able to gather new preconditional rules, relatively original
stories, slightly different from those which can be generated with the rules
from the original stories, could be created. In this way, the rule-acquisition
process could expand its capabilities by changing the way in which stories
are built.

This opens new issues to solve, as for instance the amount of noise to
add to the generated stories. Too much noise will generate an excessive
amount of non-coherent stories, and too little noise will not be useful at
all.

It would be interesting as well to use more sophisticated Natural Lan-
guage Generation systems for text realization. The one that has been
shown here is too poor, and the human criteria about stories is probably
being affected by the realization and not only the underlying content. This
text realization is, however, supposed to happen at a different level than the
rest of the system. That is, improving the text realization, while important,
should not influence the rest of the algorithm, at least in principle.

9.4.3. Improving the Implementation

The implementation of the theoretical model has been carried out for
testing purposes, and it has not been adapted for use beyond this. To make
it possible further research of the model, and given that all the demonstra-
tion of the validity of such a kind of model is carried out empirically, it
makes sense to create a version of the implementation that can be used in
a more robust way.

On the one hand, the implementation could be executed faster. During
the middle stages of the development of the prototype, parallelization of the
code was taken into account. While it was finally discarded in order to keep
a fast development process, due to the type of algorithms, parallelization
can make it possible to explore bigger subsets when searching candidate
preconditional rules and links and when performing story generation.

On the other hand, the development of such a model is intended to be
useful to the research community, so modifying the prototype following a
software design approach that makes it possible to implement and release
the system as a library –or whatever other form of distributable and usable
system– makes sense.
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9.5. Applications of the Structural Processing
of Narratives

The overall objective of this research problem is not only the devel-
opment of a theoretical model for managing narrative texts, but also the
application of the results to real applications. While the current version of
the implementation is still far from being applicable in a real scenario, it is
considered that the ideas, once built together in a working system, could
improve or ease certain human tasks.

The first application that could benefit from the use of this model is
plain story generation. While, as it has been shown, the solution is yet
unable to produce high-quality stories, nothing prevents from applying
the concepts developed in this research to create a simple story generator.
This hypothetical generation system would probably reach a higher quality
of generation by creating a mixed approach in which both structural and
cognitive methods are used.

Not only classic story generation could be the objective of this model.
One of the main benefits of the proposed algorithms is that rule acquisi-
tion can be carried out pseudo-automatically, which leverages the possible
range of applications to any scenario in which human criteria can be gath-
ered. Since the rating that are required for the system to work are boolean,
one can imagine several situation in which this is easily doable.

For instance, in narrative videogames, the player could play an auto-
matically generated story and then rate it as coherent or non-coherent.
Then, rules could be extracted from this rated story, and they could there-
fore, as the model proposes, be included in supervised rule-sets. This
would provoke an iteratively refined generation system which would lead
to the generation of coherent stories without any additional human inter-
vention in principle.

The synthetic proposed implemented scenario for demonstrating that
the preconditional rule acquisition is possible does not represent well real
scenarios in general. While a commercial system could require prelimi-
nary training of the generation process, a more user-friendly system would
perform this rule extraction in a more indirect way.

For instance, in an even more sophisticated approach, the opinion
about coherence could be extracted in a more automatic way using non-
explicit methods. Instead, the way in which the player plays the game
could be analysed. For a trivial solution, non-coherence stories could be
directly rated as such if the player stops playing it without having finished
the story, for instance. This is just a hypothetical scenario and no real
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solution is being proposed, but it is considered that this kind of systems
could be built as an application of this model. Of course, rating coherence
in this way would be polluted with the implicit rating of many other aspects
as interest or engagement. This would have to be addressed in the creation
of a system like this one.

Many other uses of this research could be found, and this section has
only intended to propose a brief perspective of how the structural process-
ing of narrative can be applied. While some of this applications are in
general solvable by any approach to story generation or understanding,
doing it with algorithms based on structure can offer new things that, at
least partially, can make the solution of these long term problems more
reachable.

9.6. Chapter Summary

This chapter concludes the thesis by examining the main outcome,
and proposes further lines of investigation. Both the benefits and the
drawbacks of the research process are highlighted, and the extent to which
the hypotheses suggested in the first chapter have been demonstrated is
discussed.
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Capítulo 10

Introducción

El tratamiento semántico de los textos narrativos trata de alcanzar, des-
de uno u otro punto de vista, la interpretación de cómo los humanos

procesan historias. En general, las aproximaciones semánticas han pre-
dominado en los sistemas de generación [Meehan, 1976, Turner, 1992,
Bringsjord and Ferrucci, 1999, Riedl, 2004]. Mientras que nada evita que
la investigación en este tipo de sistemas pueda llegar a tener éxito, no es
una tarea fácil. Los problemas de la IA en general (el cuello de botella de
la adquisición del conocimiento, y otros) también aparecen en la Narrativa
Computacional. Como una cantidad importante de información se requiere
para implementar este tipo de sistemas, el coste de construir estas bases
de conocimiento ha sido una barrera en el desarrollo de programas de este
tipo.

De acuerdo con estas características de la Narrativa Computacional,
una importante desventaja de los sistemas de generación es que, mientras
que están construidos sobre modelos genéricos, el tamaño de historias
que pueden procesar es reducido en comparación al coste de inserción de
conocimiento. Esta es una de las razones que ha evitado que la generación
de historias se aplique en la industria. En general, esto ha sido así por el
cuello de botella de adquisición del conocimiento.

En particular, el foco científico de esta investigación se ha puesto en in-
tentar mejorar la escala a la que se genera en relación al esfuerzo de añadir
conocimiento a mano. El proyecto propone un sistema de adquisición se-
miautomática de esquemas narrativos. El objetivo es ampliar la escala de
generación mediante la reducción de esfuerzo para incluir nuevas reglas.
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10.1. Motivación de la investigación

Varios sistemas de generación ya existen, pero la cantidad de historias
que pueden generar es muy reducida. Para generar nuevas historias, nue-
va información del dominio tiene que ser incluida a mano, lo cual hace
aumentar el coste de mejora y escalado de las capacidades de proceso.
Esto es costoso y la experiencia prueba que impide crear sistemas muy
complejos.

En vez de tratar de resolver el problema de adquisición de conocimiento
el bloque, tiene sentido restringir el alcance del problema a un subdominio.
En concreto, los textos narrativos tienen ciertas propiedades que pueden
ser usadas para crear modelos restringidos de adquisición de esquemas.

Tiene sentido, por lo tanto, crear un modelo que, si bien no sustituye
totalmente la intervención manual, al menos puede reducir la cantidad de
trabajo que los humanos deben desarrollar para crear nuevo conocimien-
to. Por lo tanto, la principal motivación de esta investigación es el beneficio
que el estudio de estas posibilidades puede darse. Como se hace la hipó-
tesis de que es posible reducir la cantidad de trabajo humano necesario
para extraer estructuras narrativas, esto es considerado una motivación
justificada.

10.2. Objetivos

Crear un sistema computacional que reciba historias escritas por
humanos como entrada.

De ellas, extraer instancias de algún tipo de estructura, minimizando
hasta el límite posible la necesidad de intervención humana. Esta
estructura será definida como parte de la investigación.

Usar esas instancias para generar automáticamente historias.

Validar el proceso completo a través de evaluación humana, intentan-
do restringir, en la medida de lo posible, el interfaz hombre-máquina
a texto en lenguaje natural.

Las narraciones objetivo tienen que cumplir estos requisitos:

Las narraciones sólo contendrán un sólo hilo narrativo. Complejas y
múltiples líneas causales no están permitidas.

Las narraciones no estarán ordenadas por relaciones temporales
complejas. Se imponen estas restricciones:
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• Cada evento en las narraciones durará una sola unidad de tiem-
po.

• Los eventos estarán ordenados por tiempo en las narraciones.

10.3. Hipótesis

Inicialmente, el foco fue puesto en la generación de historias. Como la
intención era romper parcialmente el límite que la adquisición de conoci-
miento pone en este campo, se formuló la hipótesis de que una función de
evaluación explícita podía ser suficiente [León and Gervás, 2010].

Sin embargo, esta hipótesis no fue correcta y la función de evaluación
no sirvió para mucho. Sin embargo, el proceso llevó a la formulación de
una nueva hipótesis (que resultó definitiva), basada en el tratamiento es-
tructural:

Un cierto conjunto de relaciones estructurales en una narración
es suficiente para crear historias evaluadas como coherentes
por humanos. Es decir, una vez que estas relaciones son cono-
cidas, la coherencia puede ser analizada en estos términos.

Adicionalmente, se completó la hipótesis con esta sub-hipótesis:

Las instancias de estas relaciones estructurales hipotéticas pue-
den ser adquiridas semiautomáticamente mediante un algorit-
mo computacional. Por lo tanto, los patrones extraídos desde
historias coherentes y no coherentes pueden ser recogidos co-
mo contenido para la generación.

10.4. Metodología

El desarrollo de este trabajo ha sido dirigido por la aplicación de meto-
dología de investigación basada en el estudio del trabajo previo en el campo
que nos ocupa y la aplicación de las tecnologías disponibles para probar,
hasta el punto posible, la validez de las hipótesis previamente enunciadas.

Una aproximación secuencial para la propuesta científica ha sido lle-
vada a cabo: la identificación del problema, el enunciado de la hipótesis,
la sugerencia de una solución, y la experimentación y el análisis de los
resultados.

La primera etapa de la investigación consistió en la lectura de literatura
científica y no científica en el área de la Narrativa Computacional. Por lo
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tanto, los avances en Narratología e Inteligencia Artificial fueron tenidos en
cuenta para aprender de un sustrato rico antes de afrontar la identificación
de objetivos útiles.

Aparte de un ordenador personal (AMD PhenomTM9550 Quad-Core
Processor), la implementación ha sido llevada a cabo usando el sistema
SWI-Prolog [Wielemaker, 2010]. Todo el sistema de documentación ha si-
do maquetado con LaTEX[The LaTeX Project, 2010], incluyendo este docu-
mento. Para el análisis estadístico, el programa y lenguaje R ha sido usa-
do [R Development Core Team, 2010]. Scripts de post-procesado de datos
han sido creados con Lua [Lerusalimschy et al., 2006] y el lenguaje de
programación Ruby [Thomas and Chad Fowler, 2005]. Todo el desarrollo,
pruebas y análisis han sido ejecutados en GNU/Linux.



Capítulo 11

Trabajo previo

Este capítulo está dedicado al estudio de la investigación científica pre-
via, cuyo desarrollo influencia este trabajo. Principalmente trata de

analizar las técnicas teóricas y prácticas relacionadas con el diseño y el
desarrollo de esta tesis.

11.1. Narratología

La Narratología es la ciencia dedicada al estudio estructuralista de las
narraciones y de la manera en la cual los humanos las entendemos y las
usamos. Dado que la aproximación a las narraciones que propone la Narra-
tología está estrechamente relacionado con la Narratología Computacional,
es útil comentar algunas de sus más importantes características.

La Narratología se centra en las características internas de la narrati-
va y en las similitudes y diferencias con otros tipos de comunicación. La
Narratología estudia estas características, intentando quedar parcialmen-
te aislada de otros fenómemos como la lingüística o la semiótica. De este
modo, la Narratología permanece como una disciplina independiente.

Algunas descripciones de narración la definen como un cuento, algu-
nas otras como la acción de contar algo, y otras se centran en la des-
cripción de las partes estructurales del discurso narrativo propiamente
dicho [Real Academia Española, 2010]. Este enfoque estructuralista a la
descripción de las narraciones establece la base de la Narratología moder-
na, aunque la ciencia de la Narratología se considera de un modo retrospec-
tivo, quizá enraizando en Aristóteles Poetica [Aristotle, 1974]. Aristóteles
postuló que la imitación del mundo real crea argumentos de los cuales
las unidades más importantes son escogidas y ordenadas en una trama.
La imitación de las acciones en el mundo real (praxis) crea un argumento
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(logos) del cual las unidades (mythos) son escogidas.
La Narratología moderna tienes sus orígenes en los análisis estructu-

ralistas de los textos, basados en el trabajo de Barthes, Genette, Todorov y
otros [Barthes and Duisit, 1975, Todorov, 1977, Genette, 1979]. La Narra-
tología más moderna, post-estructuralista, crea perspectivas en las cuales
la ciencia cognitiva hace que se consideren las narraciones como fenóme-
nos psicológicos, y propone un estudio de la narrativa en términos de una
perspectiva cognitiva [Herman, 2000].

11.2. Narrativa Computacional

La Narrativa Computacional se dedica a la representación y procesado
de las narraciones por ordenadores. Uno de los subcampos más estudiados
de la Narrativa Computacional es la generación de historias. Aparece en
los años 70 del siglo XX con el interés humano de entender y procesar
historias.

Roger Schank fue el pionero del estudio del impacto de la narrativa en
humanos desde un punto de vista formal y computable. Schank postuló
que la manera de la que la memoria funciona no está sólo basada en
procesos que manipulan datos mentales, sino que es un proceso continuo
de recuerdo y adaptación de historias previas que definen nuestro mundo,
como en el Razonamiento Basado en Casos (que se origina en el trabajo de
Schank) [Schank and Abelson, 1977, Schank, 1982].

Schank propone el término script, que consiste en unidades cortas de
conocimiento secuencial sobre los pasos típicos que han de ser tomados
en una cierta situación. Por ejemplo, Schank propone el clásico ejemplo
del restaurante: alguien entra en un restaurante, pide comida, come, et-
cétera. Este conocimiento común, según Schank, is muy importante en el
conocimiento humano.

Para implementar este tipo de conocimiento semántico en ordenadores,
Schank propone la dependencia conceptual. La dependencia conceptual es
un método formal basado en acciones primitivas y relaciones entre ellas y
sus objetos [Lytinen, 1992].

Programas como SAM [Cullingford, 1981] or PAM [Wilensky, 1981] co-
menzaron el desarrollo de una teoría de narrativa computacional basada
en personajes y en la manera de la que intentaban alcanzar sus objetivos.
Algunos modelos del modo en el que los procesos de la memoria pueden
ser implementados han sido también estudiados [Kolodner, 1980].

Estos estudios provocaron la aproximación inversa: en vez de intentar
entender los métodos humanos, tenía sentido intentar generar narrati-
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va a través de modelos de métodos humanos, como se hizo en TaleSpin,
[Meehan, 1976, Meehan, 1981] y otros.

Tras esta etapa inicial, la Inteligencia Artificial aplicada a la narrativa en
estos términos fue abandonada, con las excepciones de algunos sistemas
[Turner, 1992, Mueller, 1987].

La Inteligencia Narrativa [Mateas and Sengers, 1999] y otros proyec-
tos multidiscipinares en Narrativa Computacional renuevan el interés del
campo en el sigo XXI. La formalización teórica de la narrativa, el desa-
rrollo de los sistemas de generación de historias, sistemas de extracción
de conocimiento humano narrativo, y otros proyectos, están, de nuevo,
acrecentando el interés en el campo.

11.3. Evaluación de Narrativa

La evaluación y la comprensión de la narrativa han sido estudiadas
principalmente por la Psicología. Por ejemplo, Kelly analiza cómo la per-
sonalidad se desarrolla de acuerdo con las construcciones estructurales
que los humanos creamos a través de las historias que leemos u oímos
[Kelly, 1955]. Applebee estudió cómo las capacidades evaluativas en na-
rrativa de los niños crecen en paralelo con sus capacidades de contar
historias [Applebee, 1978].

En relación con la evaluación computacional de la narrativa, hay interés
en encontrar algún tipo de métrica para comprar la calidad de los sistemas
de generación de historias. Rowe et al. proponen StoryEval, un armazón
para medir y comparar sistemas de generación de historias. StoryEval
sugiere evaluar estos sistemas teniendo en cuenta métricas narrativas,
estudios cognitivo-afectivos, estudios centrados en el director y evaluaciones
narrativas características [Rowe et al., 2009].
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Capítulo 12

Definición de narraciones

Teniendo en cuenta la representación de historias que se ha hecho en
investigaciones previas, una definición formal de narración ha sido crea-
da y refinada iterativamente para encajar con los requisitos de la aproxi-
mación computacional que se trata en esta tesis. Durante el proceso de
creación de este modelo, diferentes formalizaciones fueron consideradas
[León et al., 2007b, León and Gervás, 2008, León et al., 2008].

12.1. Definición de narración en su relación con
modelos conceptuales

Esta investigación define narración o historia como un conjunto orde-
nado de hechos por orden cronológico. Por lo tanto se igualan, hasta cierto
punto, los términos de fábula y narración de acuerdo con la definición de
algunos formalistas rusos [Propp, 1928]. Es importante notar que esto es
una definición ad-hoc usada como nomenclatura para esta tesis: no se
asume ninguna similitud psicológica, formal o narratológica. De aquí en
adelante, cualquier referencia a narración o historia se refiere al mismo
concepto, excepto donde se especifique lo contrario.

Esta investigación se centra en el estudio formal de tramas de histo-
rias, y no en características narrativas o ligüsticas más complejas. Este
foco en las tramas ha sido también seguido en la mayor parte de sistemas
de generación narrativa que se presentan en la literatura [Meehan, 1976,
Bringsjord and Ferrucci, 1999, Riedl and Young, 2006]. Por lo tanto, no se
hace ningún estudio sobre la realización superficial como texto o las pro-
piedades artísticas. Aunque una generación simple de texto ha sido llevada
a cabo por motivos de experimentación, se asume que no se ha conseguido
una calidad suficiente.
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12.2. Definición formal de narración en este tra-
bajo

La representación formal se centra en la capa de discurso, y, en particu-
lar, la definición formal de narraciones no se enmarca en ningún dominio
semántico en concreto. Permite, así, la representación de conocimiento del
mondo [León and Gervás, 2010]. La semántica que el nivel cognitivo asigna
no se tiene en cuenta.

El modelo formal está presentado en orden ascendente en relación con
sus partes constituyentes. Primero, los elementos más básicos, los átomos,
se muestran. Después, las acciones, y después las narraciones propiamen-
te dichas. Estos nombres de las partes han sido creados para tener una
palabra de referencia, y no se asume ninguna similitud con los conceptos
que representan en el idioma común. Aunque la selección de los términos
está claramente influenciada por conceptos similares de Narratología, sólo
el significado formal que se asigna en esta investigación debe ser interpre-
tado cuando se haga referencia a ellos.

No se hace ningún asunción sobre la aplicabilidad posterior de este
modelo de narraciones en otros sistemas. Ha sido creada para este proyecto
de investigación y, aunque podría servir para basar otros trabajos, éste no
ha sido el objetivo.

12.3. Constituyentes de las narraciones forma-
les

12.3.1. Átomos

Los átomos son elementos atómicos que definen una sola cosa, carácter,
idea o cualquier instancia simple de cualquier concepto. Pueden represen-
tar cualquier entidad en un dominio particular, pero están restringidos
de tal modo que no pueden hacer referencia a ninguna parte de la narra-
ción. Por tanto, los átomos no pueden representar acciones ni narraciones
(definidas a continuación).

Los átomos están unívocamente especificados por su nombre. Esto sig-
nifica que dos átomos con el mismo nombre representan el mismo concep-
to. Ejemplos de átomos son john, bird, house, hope o sad. En este sentido,
los átomos son similares a los de la lógica de primer orden.
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12.3.2. Variables

Más adelante se verá que la evaluación y el algoritmo para la extracción
de estructuras para la creación de nuevas historias necesitan variables
para representar reglas abstractas. Las variables que se proponen en este
modelo son similares a las variables lógicas, y pueden representar cual-
quier átomo. Las variables están representadas por un símbolo seguido de
un signo de interrogación. Por ejemplo x? ó token_variable? son represen-
taciones válidas de variables.

Una vez que una variable está ligada a un átomo en una ejecución de
los algoritmos (descritos más adelante), todas las instancias de esa variable
están ligadas a ese átomo. Sólo hay un espacio de variables en el modelo,
de tal modo que todas las acciones que contienen la variable x? verán
ligado su valor una vez se ligue en un punto de la ejecución.

12.3.3. Acciones

Las acciones son los constituyentes básicos de las narraciones, y re-
presentan eventos en la historia. Las acciones están definidas por estos
eventos, propiedades o relaciones (de aquí en adelanto, el núcleo) y una
secuencia ordenada de átomos. La acción, por tanto, enlaza un núcleo
con átomos, significando que la acción, propiedad o relación es cierta para
ellos.

Un núcleo está representado en forma de una palabra, que puede ser
compuesta. Por ejemplo love o take_to son núcleos. Aunque esto podría dar
lugar a confusión porque los núcleos están formados de la misma manera
que los átomos, en la práctica esto no ocurre porque los núcleos, en el
resto del modelo, siempre forman parte de una acción (tal y como se define
después). La estructura de las acciones define formalmente la unión entre
el núcleo y los átomos.

De acuerdo con los parámetros enlazados al núcleo en forma de átomos
o variables, dos tipos de acción se han definido:

Las acciones instancias son acciones cuyos elementos son átomos
(take(john, glass)).

Las acciones de plantilla son acciones en las cuales algún elemento
es una variable (love(ofelia, x?) o attack(x?, y?)).
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12.4. Narraciones

Las narraciones son secuencias ordenadas de acciones. Han sido de-
finidas a partir de las partes anteriormente descritas (átomos, núcleos y
acciones). La ecuación 12.1 muestra una representación formal de una
narración genérica.

n = [a1, a2, a3, · · · , an] (12.1)

donde [a1, a2, a3, · · · , an] es una lista de acciones instanciadas y n es una
narración.



Capítulo 13

Procesamiento estructural de
narraciones

La primera parte de la investigación tuvo como objetivo la realización de
un prototipo funcional en el que se estudiaba la generación de textos

narrativos a gran escala mediante un enfoque semántico. El resultado final
fue que, si bien tenía sentido la aproximación, el coste de la inserción de
conocimiento era muy alto. Por tanto, se decidió centrar la investigación
científica en un ámbito puramente estructural, tal como se describe en este
capítulo. El trabajo y los resultados de la primera parte de la investigación
pueden encontrarse en [León and Gervás, 2010].

Este capítulo muestra cómo una relación estructural de las narracio-
nes, en particular, puede ser la base del proceso automatizado de narracio-
nes. Esta relación ha sido llamada enlace precondicional, y las siguientes
secciones explican sus principales características. La selección de una re-
lación simple permite analizar computacionalmente las características es-
tructurales de las historias y construir un algoritmo que extrae reglas para
los enlaces precondicionales, las llamadas reglas precondicionales (capítulo
14).

13.1. De un modelo cognitivo a una definición
estructural

Estudiando los resultados recogidos de la evaluación con humanos en
el generador semántico de historias, fue detectado que había una corre-
lación muy clara entre dos variables: la causalidad y la cronología. La
causalidad representaba la percepción de que todo pasa por una razón
lógica, y la cronología evaluaba la correcta disposición de los eventos en el
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tiempo (por ejemplo, que las causas aparecían antes que las consecuen-
cias). Como se trabajó en un dominio muy simple, fácilmente interpretable
por todos los evaluadores, todos ellos evaluaron la calidad de estas dos
variables con muy pocas diferencias.

Una heurística fue creada para capturar esto: el enlace precondicional.
Los enlaces precondicionales tratan de describir un patrón estructural
que está implicada en el reconocimiento humano de la causalidad y la
cronología, ignorando el contenido semántico de estos dos conceptos.

13.2. Propiedades estructurales como coheren-
cia estructural

La aproximación propuesta en este trabajo no pretende emular ningún
modelo cognitivo. La propuesta consiste en el cambio desde aproximacio-
nes puramente semánticas a otras más estructurales, y consecuentemente
la coherencia en las narraciones está definida en estos términos, sin nin-
guna asunción cognitiva, como se establece a continuación:

Una historia es coherente en el modelo propuesto si es eva-
luada como tal por evaluadores humanos.

Una historia es estructuralmente coherente is tres patrones
estructurales están presentes: el foco, en enlace único y la co-
nexión completa.

El foco, el enlace único y la conexión completa se definen más adelante.
No han sido explicados antes porque su definición están enlazada con
la noción de enlace precondicional. La ausencia de una base cognitiva
ha llevado a la definición de estas propiedades en términos del enlace
precondicional, que es detallado más adelante.

Una definición formal de coherencia estructural en una historia s se
muestra en la ecuación 13.1. La implementación (capítulo 15) se basa en
esta ecuación.

is_structurally_coherent(s) = is_focused(s) (13.1)
∧ is_fully_connected(s)
∧ is_uniquely_linked(s)

La definición de la coherencia estructural ha sido formalizada como una
función de evaluación booleana. El modelo establece que una narración es
estructuralemente coherente o no.
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13.2.1. Foco

Una historia tiene foco cuando tiene un sólo final. Es decir, termina en
una sólo acción o evento. Esta definición se basa en el trabajo de Trabasso
sobre la coherencia en tramas [Trabasso and Sperry, 1985]. Intuitivamen-
te, si una historia se cuenta y no se puede extraer ninguna conclusión
de la narración, podría ser considerada que está incompleta. Esto ha sido
interpretado como una falta de coherencia. Una definición formal de foco
puede verse en la sección 13.4.1.

13.2.2. Conexión completa

Una historia está completamente conectada cuando todas las acciones
están relacionadas entre sí. Esta definición trata de capturar intuitivamen-
te la restricción de simplicidad de que sólo un hilo narrativo puede existir
en las historias simples. La conexión completa captura el hechos de que
ninguna acción en la historia debe ser contada sin una razón y que todos
los hechos relevantes deben ser contados (de otro modo, la conexión esta-
ría perdida). La conexión completa está formalmente definida en la sección
13.4.2.

13.2.3. Enlace único

Una historia está únicamente enlazada si dos eventos están relacio-
nados por una single idea o conclusión. Esta es la definición conceptual
de otra parte de la simplicidad en las historias coherentes. Si dos even-
tos están relacionados con otro por varias relaciones, más de un hilo está
presente. Por lo tanto, la historia no es simple en los términos estableci-
dos. Esta definición conceptual de enlace único está definida en la sección
13.4.3.

13.3. Enlaces precondicionales

La definición de enlace precondicional sólo se inspira en la manera
en la que, heurísticamente, los humanos llevan a cabo la interpretación de
historias, pero no intenta capturar ningún proceso cognitivo. En vez de eso,
la propuesta actual lo define como una heurística para máquinas, y no para
humanos. Es decir, la definición está estrictamente ligada a la información
computacionalmente procesable: la información que los humanos usamos
y la manera en la que lo hacemos no es necesariamente compatible.
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En una historia formalizada como la secuencia de acciones
{e1, · · · , en}, las acciones

{
ei , · · · , ej

}
(las precondiciones) están

precondicionalmente enlazadas a ek (la consecuencia) si apare-
cen antes que ek y el grafo dirigido resultante de crear enlaces
precondicionales para todas las acciones tiene coherencia es-
tructural

1. foco, teniendo todos los enlaces convergentes a una sola
acción.

2. conexión completa, si todas sus acciones enraízan directa
o indirectamente en una sólo acción, y

3. enlace único, según el cual cada par de acciones conecta-
das está conectada por un sólo enlace como mucho.

donde 1 ≤ i, j, k ≤ n.

Esta definición es obviamente estructural, es decir, sólo captura pro-
piedades superficiales de historias de acuerdo a una relación sintética.
Como ejemplo, si una historia está compuesta por la acciones {a, b, c, d, e},
enlaces precondicionales válidos aparecerían en la figura 5, pero no en la
figura 6.

El conjunto de acciones de la precondición de un enlace precondicio-
nal representa conjunción. El modelo no considera representar disyunción
porque esto llevaría al no-determinismo, que se ignora en este modelo. El
proceso de razonamiento sobre la causalidad sería más complejo si una
historia no determinara únicamente los enlaces precondicionales de algún
hecho.

13.4. Definición formal de patrones estructura-
les

13.4.1. Foco

is_focused(s) = | {a ∀ a ∈ s, if is_outcome(s, a)} | == 1 (13.2)

is_outcome(s, a) = ∀a′ ∈ s−{a} , exist_preconditional_chain(s, a′, a) (13.3)
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Graph 5: Conjunto válido de enlaces precondicionales. Las flechas repre-
sentan enlaces.

a

c

b

e

d

Graph 6: Conjunto no válido de enlaces precondicionales. Las flechas re-
presentan enlaces.

13.4.2. Conexión completa

is_fully_connected(s) = action_fully_connected(a) ∀a ∈ s (13.4)
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action_fully_connected(s, a) = preconditional_link(s, a) == root (13.5)
∨ action_fully_connected(s, a′)
∀ a′ ∈ preconditional_links(s, a)

13.4.3. Enlace único

is_uniquely_linked(s) = action_uniquely_linked(a) ∀a ∈ s (13.6)

action_uniquely_linked(s, a) = ¬ duplicates_in(pl) (13.7)
where pl = all_preconditional_links_to(s, a)

13.5. Reglas precondicionales

Las reglas precondicionales son pares de un conjunto de precondiciones
y una consecuencia en la cual las precondiciones son acciones de plantilla
(según se definen en la sección 12.3.3), y la consecuencia es una acción
de plantilla sencilla. La expresión 13.8 muestra un ejemplo.

go(x?, y?) ∧ see(x?, z?) �want(x?, z?) (13.8)

13.6. Cálculo de los enlaces precondicionales
en una historia

El cálculo de los enlaces precondicionales en una historia consiste en
el proceso de asignar los enlaces precondicionales apropiados a los hechos
correspondientes en una historia, de modo que se obtenga finalmente una
estructura concreta.

El algoritmo 7 muestra una versión en pseudocógido del algoritmo no
determinista para calcular una red precondicional correcta en una historia.
Como se muestra en la figura 13.1, la entrada del algoritmo consiste en
una historia y un conjunto de reglas precondicionales.
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Algorithm 7 Pseudocódigo para asignar una red precondicional a la his-
toria s.
1: s← historia actual
2: R ← conjunto de reglas precondicionales
3: for candidate_network ∈ candidate_preconditional_networks(R, s) do
4: l ← apply candidate_network on s
5: if is_structurally_coherent(l) == true then
6: return candidate_network
7: end if
8: end for
9: return “No se puede encontrar una red precondicional para s.”

Algorithm 8 candidate_preconditional_networks: algoritmo en pseudocó-
digo para encontrar las redes precondicionales candidatas.
1: R ← conjunto de reglas precondicionales
2: s← historia actual
3: for a ∈ s do
4: for any r ∈ R do
5: if a puede ser instanciada con r then
6: añadir enlaces entre las precondiciones de r y a
7: end if
8: end for
9: end for

10: yield network
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conjunto de
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precondi-
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computación
red
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Figura 13.1: Modelo de caja negra el algoritmo de cómputo de enlaces
precondicionales.



Capítulo 14

Extracción automática de reglas
precondicionales

Este capítulo explica cómo el proceso de adquisición de reglas se lleva
a cabo en relación con el modelo.

historia secuencia
enlaces

precondi-
cionales

reglas
precondi-
cionales

+

grafo

conjunto de reglas

historia
generada

historia
escrita

restricciones
en la cohe-

rencia

identificación abstracción

abstracción

adición

generación

traducción
humana

realizaciónvalidación humana

Figura 14.1: Descripción gráfica del proceso de extracción de reglas.
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14.1. Algoritmo de extracción de reglas

14.1.1. Corpus de historias de entrada

Se tiene un corpus fijo de entrada, de historias coherentes, al empezar
la ejecución. En cada iteración, una nueva historia es generada. Así, se
podría decir que un nuevo corpus basado en el anterior se crea: nada
evitaría usar las historias coherentes generadas en el proceso como corpus
de entrada para otra ejecución, aunque esto no hay sido tratado en este
trabajo.

14.1.2. Generación de reglas precondicionales

Para cada historia en el corpus de entrada y para cada historia gene-
rada (tal como se muestra en la secciones siguientes), se extraen reglas
precondicionales. Esto es llevado a cabo como se detalle en el algoritmo 9.
Este algoritmo es análogo al algoritmo para crear enlaces precondicionales
mostrado en 7, y abstrae implícitamente las reglas de los enlaces en un
proceso de variabilización básico [Charniak and McDermott, 1985].

Algorithm 9 Algoritmo en pseudocódigo para extraer un conjunto de reglas
de un corpus de entrada.
1: s← historia actual
2: for next_candidate ∈ siguiente conjunto candidato de reglas do
3: slinked ← calcular los enlaces precondicionales de s con next_candidate
4: if ϸ(slinked) == true then
5: return next_candidate
6: end if
7: end for
8: return “No se puede encontrar un conjunto de reglas.”

Cada conjunto candidato de reglas precondicionales es generado co-
mo se describe en el algoritmo 10. La definición formal de la función
candidate_rules puede ser examinada en el algoritmo 11.

La función single_rule(story, kernel) devuelve reglas de acuerdo con el
siguiente orden. Se asume que existe una función que crea iterativemente
patrones de variables vara , · · · , varb.

1. Primero, el átomo especial raizraiz � nucleo(var1, · · · , varn).

2. Después, se genera el kernel de la siguiente acción de la historia
story: nucleoaccion previa(vari , · · · , varj) � nucleo(varx , · · · , vary).
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Algorithm 10 Orden de generación del los conjuntos de reglas precondi-
cionales candidatos.
1: s← historia actual
2: K ← conjunto de núcleos de s
3: R ← {}
4: for i ← 1 until i = |K | do
5: add candidate_rules(Ki , s) to R
6: end for
7: return R

Algorithm 11 Reglas candidatas para cada núcleo.
1: s← historia actual
2: k ← núcleo actual
3: m ← número máximo de reglas por núcleo
4: for i ← 1 until i = m do
5: yield i reglas para k en la historia s
6: end for

Algorithm 12 Algoritmo de creación de un número concreto de reglas.
Auxiliar del Algoritmo 11.
1: s← historia actual
2: k ← núcleo actual
3: j ← número de reglas que van a generarse
4: rules← {}
5: for i ← 1 until i = j do
6: añadir una nueva regla a rules de acuerdo con single_rule(s, k)
7: end for
8: yield rules
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3. Tras eso, el paso 2 se repite yendo hacia atrás en la historia hasta la
primera acción.

Este orden asume un conjunto de variables
{
var1, · · · , varj

}
. Las varia-

bles son creadas mediante el análisis de los átomos de las acciones en
las cuales la creación de reglas precondicionales está basad. El proceso
primero examina los diferentes átomos de la historia, devolviendo un con-
junto T = {t1, · · · , tn}. Después, un conjunto correspondiente de variables
es creado, mapeando cada átomo con una nueva variable V = {v1, · · · , vn}.

Resumiendo, una historia de ejemplo haría que se llevara a cabo la bús-
queda de reglas precondicionales para el kernel go mediante la exploración
de los candidatos siguientes, tras parametrizar, con este resultado:

root � go(x?, y?)
root � go(x?, y?); buy(x?, a?) � go(x?, z?)

buy(x?, a?) � go(x?, z?)
buy(x?, a?) � go(x?, z?); go(x?, y?) � go(x?, z?)

go(x?, y?) � go(x?, z?)

Finalmente se devolvería este conjunto de reglas:

root � go(x?, y?); buy(x?, a?) � go(x?, z?)

14.1.3. Generación de historias

Como el modelo teórico no impone ninguna restricción, la definición
del sistema computacional para generar historias se detalla como parte de
la implementación en la sección 15.2. Es importante dejar claro en este
punto que la calidad de este generador de historias está lejos de ser alta,
y es un defecto aceptado de la implementación que se propone, por no ser
uno de los objetivos de la investigación. En el capítulo 17 se propone un
sistema de generación de historias más sofísticado.

14.1.4. Adquisición de criterio humano

De forma análoga a la generación de historias, el modelo teórico de este
capítulo no impone ninguna manera particular de aplicar criterio humano
en las historias generadas para clasificación. Siguiendo una perspectiva
de caja negra 14.2, una historia es insertada en esta parte del proceso, y
se espera un valor booleano por parte de un humano que coincida con su
opinión sobre la coherencia de la narración.
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Figura 14.2: Modelo de caja negra de la clasificación booleana de historias
por humanos.

14.1.5. Recogiendo y mezclando reglas precondicionales
buenas y malas

En una aproximación simple, las reglas precondicionales extraídas sólo
desde historias coherentes eras usadas como reglas básicas en las cuales
un patrón de unificación simple generaba una historia válida. Tal sistema
fue implementado. En las pruebas de la implementación de este sistema,
historias claramente no coherentes fuere generadas, lo cual era un error.

Para solucionar esto, el modelo actual considera un conjunto de reglas
particionado en reglas buenas y reglas malas tras la intervención humana.
Para abstraer esta clasificación de reglas, tras la clasificación de la historia,
sus reglas son extraídas y añadidas a uno u otro conjunto.

El conjunto de reglas buenas contiene los enlaces precondicionales
de las historias buenas.

El conjunto de las reglas malas conjunto de reglas de historias con-
sideradas no coherentes siempre que estas reglas no estén en el con-
junto anterior.

Es decir, si una historia considerada correcta, si, tras el análisis, genera
las reglas precondicionales {r1, r2, r3} y una historia sj, no correcta, crea
las reglas {r1, r4, r5}, el conjunto bueno contiene las reglas {r1, r2, r3} y el
conjunto malo contiene las reglas {r4, r5}.
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Capítulo 15

Implementación, evaluación y
resultados

15.1. Corpus de historias

15.1.1. Historias de asesinatos

El primer prototipo funcional de la función de evaluación fue construido
para tramas cortas de historias de asesinato. La intención era estudiar
la plausibilidad de una función de evaluación para historias, no enlazada
únicamente a la corrección [León and Gervás, 2010]. Esta implementación
consideraba un conjunto de variables mayor, las cuales fueron elegidas sin
ningún modelo narratológico o psicológico. La selección estaba basada en
la intuición del autor sobre lo que constituye una buena historia.

Los resultados empíricos era prometedores. La evaluación humana
mostró que crear una función de evaluación que mide varias variables,
basada en el análisis secuencial de versiones formales de los textos puede
llegar a asemejarse al criterio humano. Sin embargo, se hizo patente que
simplemente cambiando el foco no era suficiente: el cuello de botella de
adquisición de conocimiento aún estaba presente.

15.1.2. Aesop’s Fables

Una vez que los límites de la aproximación basada en conocimiento
fuera claramente experimentados, el proceso estructural con fábulas fue
llevado a cabo según se explica en los capítulos 13 y 14. Se encontró un
problema relacionado con el dominio en particular: Aunque las fábulas
tienen una estructura similar y muy simple, muchos eventos diferentes
aparecen en ellas (muchos verbos). Somo esto ocurre, el número de reglas
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precondicionales adquiridas por cada núcleo es muy bajo. Generalmente,
en este caso, sólo hay una o dos reglas por cada caso en todo el corpus,
lo cual es muy bajo. Este caso hace que sea muy difícil experimentar dado
que muy pocas reglas por núcleo siempre dan lugar a las mismas historias.
Es decir, aunque estas nuevas historias serían coherentes, serían muy
parecidas unas a otras.

15.1.3. Óperas

Después de descubrir el problema de las fábulas, se decidió trabajar
con óperas de siglo XIX. Estas óperas clásicas siguen una patrón muy
clásico basados en las pasiones humanas y finales trágicos. Esto sugirió
que era posible adaptar las óperas de tal modo que una traba básica fue-
se abstraída como historia simple. Esta adaptación fue requerida porque
las óperas no cumplen el requisito de ser cortas y con un sólo hilo. Sin
embargo, fue posible identificar hilos simples principales en las óperas.

15.2. Generación de historias simple

La generación de historias propuesta es muy simple y directa. Tiene
que ser tenido en cuenta en la generación de historia como tal no es el
objetivo de esta investigación, por lo tanto, esta aproximación a la gene-
ración de historias puede ser fácilmente mejorada. Sin embargo, esto ha
sido dejado como trabajo futuro (capítulo 17). El sistema de generación
de historias propuesto informa la operación de exploración mediante la
aplicación de las reglas precondicionales extraídas hasta el momento de
la generación. Es decir, en vez de generar candidatos sin ninguna restric-
ción, sólo aquellos candidatos que pueden posteriormente satisfacer las
reglas preconcionales son creados. Como estas reglas han sido cogidas de
la aplicación del proceso de adquisición, las reglas deberían capturar, has-
ta cierto punto, esquemas narrativos coherentes. Las pruebas para esta
hipótesis se detallan en las secciones siguientes.

15.3. Ejecución de un usuario

La secuencia de evaluaciones se presenta en la figura 15.1.
Para representar de una manera más gráfica la evolución del criterio

sobre las historias generadas, es posible representar la proporción entres
las historias coherentes y no coherentes para las últimas 6 generaciones.
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Figura 15.1: Curva de aprendizaje para un usuario.

El experimento concreto tardó en ejecutarse aproximadamente 8 minu-
tos y medio. Esto significa un tiempo medio de 25 segundos por historia,
aproximadamente. Aunque la creación de reglas a mano para el mismo
dominio no ha sido llevada a cabo, se asume que este sistema pseudoau-
tomático es mucho más rápido, basándonos en la experiencia. Por tanto,
la solución es prometedora de acuerdo con sus objetivos. Al menos, para
dominios simples como el que se muestra en estos resultados. Se planea
estudiar dominios más complejos como parte del trabajo futuro.

15.3.1. Saturación

Un límite se impuso en el experimento: una vez que el usuario llega a un
punto en el que la mayoría de las historias son evaluadas como coherentes,
el experimento se detiene. Puede comprobarse en la sección anterior que
este límite ha sido establecido en 5. Esto es así porque durante los primeros
ensayos se encontró un punto de saturación.

Tras algunas evaluaciones, el procedimiento actual fue incapaz de ex-
traer más reglas de una manera robusta. Mientras que es teóricamente
posible encontrar más reglas, esto no ocurre tan rápido como en la prime-
ra fase de la ejecución (fase de no saturación). Fue empíricamente com-
probado que una vez que 5 ó 6 historias seguidas son clasificadas como
coherentes, la probabilidad de estas en la zona de saturación es muy alta,
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así que se decidió estableces este punto como la condición de parada.
La saturación no tiene lugar por el sistema de experimentación en sí

mismo. La manera en la que se hacen modificaciones a las historias genera-
das para crear nuevas tiene un límite. Para mantener la semejanza con las
historias que pueden ser generadas mediante la pura aplicación de reglas,
algunas restricciones están podando demasiadas posibilidades. La canti-
dad de patrones diferentes que esto puede crear es pequeña, por lo tanto,
se agota, en un momento dado, este conjunto de patrones. Las propuestas
para el trabajo futuro, en el capítulo 17, examinan otras aproximaciones
posibles a la generación de historias para superar esta limitación.

15.4. Resultados globales

Se ha medido el tiempo medio en alcanzar la saturación. Si la adquisi-
ción pseudoautomática de reglas para un dominio es más lenta que hacerlo
a mano, la utilidad de esta solución es discutible. Como media, se tardó
8.78 minutos, con una desviación estándas de 2.752. La evaluación más
rápida tardó 4.224 minutos, y la más lenta 13.407. El tiempo medio por
cada historia fue de 26.20 segundos, con una desviación estándar de 7.02.

En relación a la comparación con la creación manual de historias, tie-
ne que ser tenido en cuenta que el sistema propuesto es capaz de generar
un conjunto de reglas a partir de un corpus de entrada sin intervención
humana, si se desea. Mientras que ha sido demostrado que esta aproxi-
mación es incompleta, es claro que el beneficio en términos de tiempo es
notable.

La figura 15.2 muestra la coherencia estructural media del proceso
de adquisición de reglas de todos los evaluadores con los que se ha ex-
perimentado. Puede ser comprobado cómo la proporción entre historias
coherentes y no coherentes aumenta casi linealmente durante la ejecución
de las pruebas.

Se asume que el contenido de las historias afecta a la evaluación, es
decir, no todas las tramas y no cualquier corpus de entrada daría estos
resultados. Las razones se explican en este capítulo, principalmente en la
sección 15.1. Mientras que estos resultados son prometedores y la eva-
luación empírica muestra que adquirir reglas de forma pseudoautomática
es posible, la aplicación de esta aproximación a otros dominios (principal-
mente a aquellos más complejos) se planea como parte del trabajo futuro.
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Figura 15.2: Proporción media de historias coherentes y no coherentes
durante el proceso de adquisición de reglas. Se muestra la proporción de
las últimas 5 historias.
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Capítulo 16

Discusión

16.1. Aspectos conceptuales de esta solución

La principal asunción en esta investigación es que los resultados em-
píricos son validos, y que el hecho de que el método modelado no imite
los procesos psicológicos humanos no es influyente. Como se presentó en
el capítulo 10, la reducida cantidad de conocimiento disponible sobre los
procesos mentales humanos en narrativa hace muy difícil implementar
sistemas que emulen realmente a los humanos.

16.1.1. Número de historias en el proceso de extracción
de reglas

El algoritmo 9 sólo aprende de una historia. Mientras que estos resul-
tados ofrecen resultados útiles (capítulo 15), el sistema podría aprender
contenido de más historias al mismo tiempo haciendo una variación bási-
ca en el algoritmo. Esto sería beneficioso en principio porque hay contenido
implícito en el conjunto de historias que podría ser extraído, no sólo de las
historias individualmente. Por ejemplo, el sistema podría extraer una regla
ra de una historia sa una una regla rb de sb. Aunque por separado podrían
ser útiles, juntas no lo serían.

Como el algoritmo de extracción de reglas debe devolver un solo con-
junto de reglas, deben ser coherentes como conjunto, y no sólo de forma
independiente. Hasta ahora, el algoritmo sólo asegura la coherencia para
historias simples.
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16.1.2. Impacto del corpus de entrada en el resultado fi-
nal

El conjunto de historias elegido como corpus de entrada afecta a los re-
sultados generales de los experimentos mostrados en el capítulo 15 porque
son la base de las historias generadas. Corpus diferentes crearía diferen-
tes historias con distintas características. Mientras que se asume que las
reglas resultantes dependerán en el contenido de entrada, es importante
discutir la manera en la que la calidad de los resultados es afectada por el
proceso de creación del corpus.

En la implementación en particular, las óperas han sido resumidas y
traducidas a una representación formal a mano, lo que introduce el criterio
del autor en la ejecución. Tiene sentido, entonces, tener en cuenta que esto
es una fuente de error. Actualmente, sin embargo, no hay manera de hacer
estoy automáticamente.

16.1.3. Influencia de otros aspectos diferentes a la cohe-
rencia

Tal y como se muestra en el capítulo 15 se les pedía a los evaluadores
que se centraran en la coherencia narrativa cuando evaluaban historias.
Esta restricción explícita fue claramente expuesta en el cuestionario para
reducir la influencia de otros aspectos de las historias en el resultado. La
experiencia adquirida presentada en la primera parte de la investigación
[León and Gervás, 2010] muestra que la opinión sobre la calidad global
que los lectores perciben cuando leen una historia influye en la valoración
de otras variables más concretas. Es decir, si un lector encuentra que la
historia es graciosa o interesante, considerará que la historia es buena,
por lo cual es posible encontrar una buena valoración para una historia
que no es realmente coherente.

Para afrontar este hecho parcialmente, el modelo asume que la eva-
luación con criterio humano es la manera global de evaluación. Es decir,
si los evaluadores humanos consideran una historia coherente, las reglas
son correctas. Esta decisión es la consecuencia de la definición estructural
de la propuesta, que intenta evitar modelos cognitivos. Si las historias que
no son coherentes son evaluadas como tal por humanos, es válido para el
sistema y el alcance de esta investigación.
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16.1.4. Influencia de la opinión humana en el proceso de
extracción de reglas

Establecer una definición general de coherencia en historias válida por
todas las historias posibles no tiene sentido porque la opinión de individuos
particulares está implicada en el proceso. No hay manera, actualmente, de
formalizas la opinión humana, y no hay razón, a priori, para das más rele-
vancia a una opinión que a otra en todos los casos. Por lo tanto, el conjunto
particular de evaluadores humanos en el proceso de adquisición de reglas
definido en la sección 14.1 afecta al conjunto final de reglas adquiridas. Es
decir, el conjunto final puede ser inválido para otros humanos.

Los resultados recogidos en la sección 15.4 sugiere que la evaluación
de la coherencia es razonablemente uniforme para un dominio simple bajo
ciertas condiciones más o menos restringidas, pero esto no tiene que ser
el caso para todos los escenarios. Se hace la hipótesis de que dominios
más complejos en los cuales la evaluación de coherencia en historias no
será uniforme pueden ser encontrados. El estudio de esta hipótesis y sus
consecuencias se planea como trabajo futuro.

16.2. Comparación con otras aproximaciones

Para que se puedan recoger reglas, el algoritmo necesita, como entra-
da, un conjunto de historias para usarlo como “corpus de entrenamiento”.
Este corpus, sin embargo, debe satisfacer ciertas restricciones. Cualquier
conjunto de textos reunidos no es suficiente, en general, para hacer que el
sistema funcione. Esta aproximación está basada en conocimiento estruc-
tural en narrativa que narraciones simples y cortas incluyen, no es datos
estadísticos.

La mayor parte de algoritmos de aprendizaje máquina pueden aprender
la mayor parte de las veces sin importar la calidad del corpus. La exactitud
del aprendizaje depende de la calidad del corpus. Sin embargo, el algoritmo
propuesto carece de esta habilidad: si las historias de entrada no son
procesables por la función de evaluación, nada podrá ser aprendido.

Por otro lado, los resultados de este proceso de aprendizaje son úti-
les totalmente tras su adquisición: el conjunto de reglas es perfectamente
modificable y legible por humanos.

La otra aproximación considerada que merece la pena comprar es la
adquisición de reglas causales desde una base de conocimiento externa.
El beneficio general es claro: no hay necesidad de crear una base de conoci-
miento, y esto ahorra tiempo y esfuerzo. Sin embargo las opciones posibles
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como OpenCyc [CyCorp, 2010] o ConceptNet [Liu and Singh, 2004] tienen
ciertas características que hacen difícil aplicar la aproximación actual a la
evaluación de contenido narrativo.

Se concluye que la opción de aprender reglas es la más beneficiosa. Su
coste es bastante bajo en comparación con el coste de crear las reglas a
mano, y provee una cobertura robusta dentro de dominios concretos. Tiene
el coste de desarrollar el algoritmo, pero una vez éste ha sido creado, la
adaptación a nuevos dominios es, en principio, directa.



Capítulo 17

Conclusiones y trabajo futuro

17.1. Conclusiones de la investigación

Tras el análisis de los resultados mostrados en el capítulo 15 puede
ser concluido que las hipótesis han sido parcialmente validadas. A través
de la implementación y las pruebas ha sido demostrado cómo es posible
construir un sistema que lleva a cabo un proceso estructural que crea
historias que son consideradas coherentes por humanos.

Un énfasis especial es puesto en el hecho de que las hipótesis han sido
sólo demostradas parcialmente. Esto es considerado así porque:

Los experimentos implican criterio humano. Esto significa que la eva-
luación de coherencia es sólo parcial, y que muchos más evaluadores
humanos podrían haber sido usados para llevar a cabo un estudio
más específico. Sin embargo, debido a que el sistema es un prototipo,
ha sido considerado innecesario.

El foco inherente de la tesis está relacionado con narrativa, que es un
término muy complejo que no tiene una definición única aceptada.
Por lo tanto, sentenciar que las historias son coherentes, mientras
que plausible, no puede ser formalmente demostrado.

17.2. Beneficios e inconvenientes

Se ha concluido que la contribución actual reduce, hasta cierto punto,
el esfuerzo humano que se requiere para mejorar el dominio de generación
de narrativas para una aplicación. Mientras que esto se considera un be-
neficio claro, tiene que quedar claro que el sistema propuesto, hasta aquí,
sólo es aplicable a dominios simples y a narraciones cortas y sencillas.
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Mientras que un trabajo más detallado podría llevar a un modelo mejorado
que provea cobertura a formatos narrativos más sofisticados, esto aún no
se ha hecho.

Teóricamente, el modelo propuesto cubre el espacio completo de solu-
ciones para todos los algoritmos propuestos. Esto permite una cobertura
teórica de las soluciones, lo cual es bueno. Sin embargo, este proceso no
ha sido realizable en la práctica porque los espacios en los que se trabaja
son tan grandes que una exploración completa es intratable en términos
de computación. Por lo tanto, la ventaja teórica está bloqueada por las
limitaciones prácticas.

Finalmente, se considera que una parte importante de la contribución
es la propuesta de un paradigma totalmente estructural para el proceso
computacional de contenido narrativo. Ha sido mostrado cómo esto pue-
de ser positivo con un modelo original. Pero se hace la hipótesis de que,
mientras que esto podría abrir nuevos caminos de investigación, es bas-
tante probable que el proceso estructural por sí mismo no sea suficiente,
y que aproximaciones semánticas sean necesarias para alcanzar un grado
decente de calidad, al menos en comparación con las historias de otros
sistemas de generación automática y de humanos.

17.3. Trabajo futuro

17.3.1. Mejora del modelo

Se ha demostrado empíricamente que el proceso estructural de histo-
rias tiene sentido, al menos para algunos dominios. Sin embargo, la aplica-
ción de la aproximación propuesta no está limitada al sistema presentado,
y se hace la hipótesis de que soluciones más sofisticadas y potentes pueden
ser desarrolladas.

Por ejemplo, la clasificación de historias podrías ser mejorada de forma
que la función de evaluación y el criterio humano no sean booleanos, sino
que estén en un intervalo real. De este modo, una separación simple entre
historias coherentes y no coherentes podría ser mejorada y un ranking de
historias podría ser creado. Esto llevaría a un concepto de historia en el
que unas son “más coherentes” que otras.

La figura 14.1 muestra un diagrama del sistema de adquisición de re-
glas precondicionales expuesto. Mientras que ha sido demostrado que tiene
sentido construir conjuntos de reglas de este modo, alunas mejoras pueden
ser aplicadas al algoritmo de modo que la aproximación a la adquisición de
reglas sea más potente. Por ejemplo, el primer candidato aceptado se toma
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como solución. Esto no es óptimo necesariamente, y más opciones pueden
ser tenidas en cuenta. Por ejemplo, también, sería posible elegir el mejor
candidato en base a una clasificación no booleana según la coherencia.

El modelo puede ser mejorado también mediante la adición de rela-
ciones de tiempo más complejas a la definición de historias simples. Las
asunción que se han hecho consideran un modelo extremadamente res-
trictivo. Esto se hizo para mantener el modelo simple y enfocado, pero se
hace la hipótesis de que el modelo en su estado actual podría ser aplica-
do a historias en las que la duración de cada acción es mayor que una
sola unidad e tiempo, por ejemplo. Relaciones temporales más complejas
ampliarían el campo de aplicación.

17.3.2. Generación de historias mejorada

El proceso de adquisición de reglas se basa en crear historias candi-
datas que están clasificadas bajo supervisión. La calidad de el sistema
de generación de historias afecta al tiempo requerido para llegar al punto
de saturación en los experimentos y en la capacidad de encontrar reglas
nuevas.

Tal y como ha sido diseñado, el proceso de adquisición puede sólo
recoger las reglas precondicionales que están implícitamente presentes en
las historias de entrada porque no se incluyen otras posibilidades. El punto
de saturación se alcanza cuando no hay nada nuevo que “aprender”, es
decir, un máximo local en relación a las reglas precondicionales se ha
alcanzado. Para evitar esto, se puede introducir ruido en el proceso.

17.3.3. Mejoras en la implementación

La implementación del modelo teórico ha sido llevada a cabo con moti-
vos de prueba, y no ha sido adaptada para mejor uso tras esto. Para hacer
posible que se lleve a cabo una investigación más avanzada, y dado que
la demostración de la validez de tal modelo se hace empíricamente, tiene
sentido crear una versión de la implementación que puede ser usada de
una manera más robusta.

Por una parte, la implementación podría ser ejecutada más rápido.
Durante las fases medias del desarrollo del prototipo, la paralelización del
código fue tenida en cuenta. Mientras que fue finalmente descartada para
mantener un proceso de desarrollo simple, debido al tipo de algoritmos que
se usan, la paralelización puede hacer posible expirar subespacios mayores
en la búsqueda de reglas precondicionales y enlaces en la generación de
historias.
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Por otra parte, el desarrollo de tal modelo intenta ser útil para la co-
munidad científica, de tal modo que modificar el prototipo siguiendo un
patrón de diseño software que haga posible implementar y publicar el sis-
tema como una librería –o cualquier otra forma de sistema distribuible–
tiene sentido y utilidad.
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Appendix A

Operas

This appendix shows the short formalizations that have been created
to test the system. They have been formalized by hand.

ill(violetta)
love(violetta, alfredo)
love(alfredo, violetta)

together(alfredo, violetta)
forces(germont, violetta)
breakup(violetta, alfredo)
despise(alfredo, violetta)
forgive(alfredo, violetta)

die(violetta)

Formal Story 10: Verdi’s La Traviata.

ill(mimi)
love(rodolfo,mimi)

jealous(rodolfo,mimi)
breakup(mimi, rodolfo)

back(mimi)
die(mimi)

Formal Story 11: Puccini’s La Bohéme.
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love(pinkerton, butterfly)
love(butterfly, pinkerton)

together(butterfly, pinkerton)
breakup(pinkerton, butterfly)

back(pinkerton)
together(pinkerton, kate)

die(butterfly)

Formal Story 12: Puccini’s Madama Butterfly.

love(carmen, jose)
love(jose, carmen)
kill(carmen, girl)
help(jose, carmen)
escape(carmen, jose)
breakup(carmen, jose)
love(carmen, escamillo)

die(carmen)

Formal Story 13: Bizet’s Carmen.

love(leonora, alvaro)
love(alvaro, leonora)
kill(alvaro,marques)
escape(alvaro, leonora)
chase(carlo, alvaro)
kill(alvaro, carlo)
die(leonora)

Formal Story 14: Verdi’s La Forza del Destino.
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love(tosca, caravadossi)
love(caravadossi, tosca)
want(scarpia, tosca)

chase(scarpia, caravadossi)
forces(scarpia, tosca)

kill(scarpia, caravadossi)
kill(tosca, scarpia)

die(tosca)

Formal Story 15: Puccini’s Tosca.

love(salud, paco)
want(paco, carmela)
breakup(paco, salud)
chase(salud, paco)
chase(salvador, paco)

die(salud)

Formal Story 16: Falla’s La Vida Breve.

love(duke, gilda)
love(gilda, duke)

kidnap(courtiers, gilda)
forces(duke, gilda)
chase(rigoletto, duke)
kill(sparafucile, gilda)

Formal Story 17: Verdi’s Rigoletto.

love(otello, desdemona)
chase(iago, cassio)
forces(iago, otello)

jealous(otello, desdemona)
kill(otello, desdemona)

die(otello)

Formal Story 18: Verdi’s Otello.
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