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Abstract

Creativity in narrative requires a careful management
of knowledge but story generation systems focusing on
creativity have typically circumvented this level of de-
tail by using high level descriptions of events and re-
lations. While this has proven effective for plot gener-
ation, narrative generation can be drastically enriched
with a grounded representation of actions based on low
level simulation. This level of detail and robust knowl-
edge representation can form the basis for a concep-
tual space exploration driven by narrative knowledge,
namely by guiding non-deterministic generation of suc-
cessive simulation states composing a story. This pa-
per presents and updated version of the story generation
system STellA that implements this hybrid model, along
with results and discussion on the relative benefits of the
described approach.

Introduction
Instances of story generation systems usually perform at
a relatively abstract level, focusing on the plot and ag-
gregating details that, if processed at a lower granularity
level, could enrich a story to the point that these details
themselves could potentially be the sources for new narra-
tive constructions and unexpected plot twists (Turner 1992;
Pérez y Pérez 1999; Riedl and Young 2010). This lack of
fine grain detail is usually due to the technical restrictions
that the currently available knowledge representation mod-
els impose over the design of complete story generation
systems. Classic knowledge representation methods have
proven to set the same limits on the implementation of this
kind of systems as on many other applications like expert
systems (Bell 1985) or ontologies (Rosati 2007), to name a
few.

Lower level world-modelling techniques, like simulation,
have different features than relation-based knowledge rep-
resentation. In this context, we consider simulation as a
process in which the whole world is modelled in a com-
plete structure evolves step by step according to a certain,
fully defined set of rules. This definition is broad enough
to contain a number of different approaches to knowledge
representation in general and plot generation in particular.
Simulation-based modelling, as one of these techniques, can
provide a good way to represent the needed information for

story generation while relatively different from logic-based
approaches. Indeed, simulation has been used to model nar-
rative generation, but it has not been widely used to create
explicit models of creativity in narrative. This is probably
because the most evident use of simulation is the reproduc-
tion of the evolution of a static model in order to examine
some results, which seemingly contradicts the need for un-
predictability, novelty and freedom usually assumed to play
a fundamental role in creativity.

The relatively reduced number of systems that use simu-
lation to model creative processes contrasts with the undeni-
able success of simulation for gathering results and produc-
ing data from grounded models. When seen in the appropri-
ate light, simulation becomes a powerful tool for generating
a big amount of artifacts, but only if the generative process
is able to complement the robust generation of simulation-
produced data with techniques that let the generation pro-
duce and explore a conceptual space. In fact, simulation has
been applied to story generation in several systems, but these
have not put the focus on creative generation (Meehan 1977;
Theune et al. 2003; Aylett et al. 2005).

This context suggests that enhancing a process grounded
in simulation with already available models used in Com-
putational Creativity is a promising method for producing
grounded data and at the same time explore a conceptual
space. In particular, creative processes heavily influenced
by knowledge representation and management, as story gen-
eration, can benefit from the features that both fields offer.
Generating a story is a complex process where details can
make a huge difference and simulation can provide this level
detail when used against a proper model. Together with this
granularity, explicit means for traversing a conceptual space
trying to generate a story with certain properties can provide
a useful pattern for story generation.

This hybrid system mixing simulation and creative ex-
ploration for story generation is described along this pa-
per. The current system description is an updated version
of the story generation system STellA (Story Telling Algo-
rithm) (León and Gervás 2011) that mixes a non-constrained
simulation-based production of world states and narrative
actions as source material for a conceptual space exploration
engine. The system controls and chooses simulations in a
non-deterministically generated space of partial stories until
the generation finds a satisfactory progression of simulations



that are rendered as a story.
The previous design of STellA did not include a world

simulation as a generative solution. Instead, knowledge was
represented by means of logic facts and a elaborated set of
domain rules. While this approach was carefully structured
to permit incremental knowledge inclusion, the engineering
effort for modelling the world became too big. We identified
that an even more structured representation (a well defined
structure resembling the world model used in simulations)
could alleviate the required engineering effort. This paper
thus describes the modification of the main generation en-
gine to allow for a simulation-based knowledge representa-
tion and world evolution. This includes the design of a new
representation system and the creation of a narrative-driven
conceptual space exploration based on rules (objectives and
constraints) and narrative curves. The previous version of
STellA included curves and rules, but the way in which they
were used was fundamentally different.

Related Approaches to Automatic Story
Generation

In order to avoid ambiguity, we will restrict our analysis here
to three levels of conceptual representation of a story, and
refer to these as the fabula (the complete set of what could
be told, organised in chronological order of occurrence), the
discourse (what has been chosen to tell, organised in the or-
der in which it is to be told) and the narrative (the actual way
of telling it). Of all existing effort to build plots, the present
review will be focusing on those that construct a fabula by
means of a process of simulating the actions of a set of char-
acters.

The first story telling system for which there is a record is
the Novel Writer system developed by Sheldon Klein (Klein
et al. 1973). Novel Writer created murder stories within the
context of a weekend party. It relied on a micro-simulation
model where the behaviour of individual characters and
events were governed by probabilistic rules that progres-
sively changed the state of the simulated world (represented
as a semantic network). The flow of the narrative arises from
reports on the changing state of the world model. A de-
scription of the world in which the story was to take place
was provided as input. The particular murderer and victim
depended on the character traits specified as input (with an
additional random ingredient). The motives arise as a func-
tion of the events during the course of the story. The set of
rules is highly constraining, and allows for the construction
of only one very specific type of story.

Overall, Novel Writer operated on a very restricted setting
(murder mystery at weekend party, established in the initial
specification of the initial state of the network), with no au-
tomated character creation (character traits were specified as
input). The world representation allows for reasonably wide
modeling of relations between characters. Causality is used
by the system to drive the creation of the story (motives arise
from events and lead to a murder, for instance) but not rep-
resented explicitly (it is only implicit in the rules of the sys-
tem). Personality characteristics are explicitly represented
but marked as “not to be described in output”. This suggests

that there is a process of selection of what to mention and
what to omit, but the model of how to do this is hard-wired
in the code.

TALESPIN (Meehan 1977), a system which told stories
about the lives of simple woodland creatures, was based on
planning: to create a story, a character is given a goal, and
then the plan is developed to solve the goal. TALESPIN in-
troduces character goals as triggers for action. Actions are
no longer set off directly by satisfaction of their conditions,
an initial goal is set, which is decomposed into subgoals and
events. The systems allows the possibility of having more
than one problem-solving character in the story (and it in-
troduced separate goal lists for each of them). The validity
of a story is established in terms of: existence of a prob-
lem, degree of difficulty in solving the problem, and nature
or level of problem solved.

Lebowitz’s UNIVERSE (Lebowitz 1985) modelled the
generation of scripts for a succession of TV soap opera
episodes (a large cast of characters play out multiple, simul-
taneous, overlapping stories that never end). UNIVERSE
is the first storytelling system to devote special attention to
the creation of characters. Complex data structures are pre-
sented to represent characters, and a simple algorithm is pro-
posed to fill these in partly in an automatic way. But the bulk
of characterization is left for the user to do by hand.

UNIVERSE is aimed at exploring extended story genera-
tion, a continuing serial rather than a story with a beginning
and an end. It is in a first instance intended as a writer’s
aid, with additional hopes to later develop it into an au-
tonomous storyteller. UNIVERSE first addresses a question
of procedure in making up a story over a fictional world:
whether the world should be built first and then a plot to take
place in it, or whether the plot should drive the construction
of the world, with characters, locations and objects being
created as needed. Lebowitz declares himself in favour of
the first option, which is why UNIVERSE includes facil-
ities for creating characters independently of plot, in con-
trast to Dehn (Dehn 1981) who favoured the second in her
AUTHOR program (which was intended to simulate the au-
thor’s mind as she makes up a story).

The actual story generation process of UNI-
VERSE (Lebowitz 1985) uses plan-like units (plot
fragments) to generate plot outlines. Treatment of dialogue
and low-level text generation are explicitly postponed to
some later stage. Plot fragments provide narrative methods
that achieve goals, but the goals considered here are not
character goals, but author goals. This is intended to allow
the system to lead characters into undertaking actions that
they would not have chosen to do as independent agents
(to make the story interesting, usually by giving rise to
melodramatic conflicts). The system keeps a precedence
graph that records how the various pending author goals and
plot fragments relate to each other and to events that have
been told already. To plan the next stage of the plot, a goal
with no missing preconditions is selected and expanded.
Search is not depth first, so that the system may switch from
expanding goals related with one branch of the story to
expanding goals for a totally different one. When selecting
plot fragments or characters to use in expansion, priority is



given to those that achieve extra goals from among those
pending.

The line of work initiated by TALESPIN, based on mod-
elling the behaviour of characters, has led to a specific
branch of storytellers. Characters are implemented as au-
tonomous intelligent agents that can choose their own ac-
tions informed by their internal states (including goals and
emotions) and their perception of the environment. Narra-
tive is understood to emerge from the interaction of these
characters with one another. While this guarantees coher-
ent plots, Dehn pointed out that lack of author goals does
not necessarily produce very interesting stories. However,
it has been found very useful in the context of virtual en-
vironments, where the introduction of such agents injects a
measure of narrative to an interactive setting.

The Virtual Storyteller (Theune et al. 2003) introduces a
multi-agent approach to story creation where a specific di-
rector agent is introduced to look after plot. Each agent has
its own knowledge base (representing what it knows about
the world) and rules to govern its behaviour. In particular,
the director agent has basic knowledge about plot structure
(that it must have a beginning, a middle, and a happy end)
and exercises control over agent’s actions in one of three
ways: environmental (introduce new characters and object),
motivational (giving characters specific goals), and proscrip-
tive (disallowing a character’s intended action). The director
has no prescriptive control (it cannot force characters to per-
form specific actions). Theune et al. report the use of rules
to measure issues such as surprise and “impressiveness”.

In general, approaches to Interactive Storytelling have
some degree of simulation as conceived in this work (Aylett
et al. 2005; Cavazza, Charles, and Mead 2002; Mateas and
Stern 2005). While every approach models the problem of
story generation in a specific way, there exist some degree
of similarity in the way they perform, namely by chaining
sequential states that are driven or selected by an implicit or
explicit model of plot quality.

Knowledge Representation in the Story
Generation System: Simulation

Narratives are known to share a relatively high amount of
constructions and the complexity of common sense knowl-
edge (Schank and Abelson 1977). Elaborated narratives are
as complex as common human knowledge and thus its repre-
sentation and processing is a long term problem of Artificial
Intelligence. As an example, we can borrow a famous scene
from The Hobbit (Tolkien 1972) in which Bilbo Baggins,
when trying to win the game of riddles against Gollum, asks
himself “What have I got in my pocket?”. While the scene
can seem not very complex for human cognition, this seem-
ingly simple event carries a huge amount of information that
requires a fine grain representation of characters (property,
clothes, value of items), intentions (trying to escape), self-
awareness (asking something to himself), emotions (fear),
focus and concentration of characters (focusing on some-
thing relatively independent from the current context) and
many other aspects that confer relative narrative quality and
richness.

The complexity becomes a problem when trying to rep-
resent knowledge by classic means. Logic-based knowl-
edge representations methods have been designed from the
early years of Artificial Intelligence and, after the initial
optimism (revived with the arrival of expert systems) the
complexity of such systems became clear to the point that
it is widely accepted that knowledge intensive systems are
limited and their use is restricted only to very well known
domains (Bell 1985). Many different kinds of formalisms
for knowledge representation have appeared along the last
years (Trentelman 2009; Sloman 1985), but the basic prob-
lems of knowledge representation are still present and rela-
tively unsolved (Sowa 2000; Baral 2003).

Logic-based knowledge representations for story genera-
tion has nonetheless been used in several story generation
system, but with very restricted domains (Pérez y Pérez
1999; Bringsjord and Ferrucci 1999). This has classically
lead to systems that perform well in their respective merits
and contributions, but a big amount of rich stories has not
been produced so far. In order to partially tackle this issue,
the presented version of STellA follows the hypothesis that
grounding knowledge representation as much as possible is
determinant for allowing a story generation system to pro-
duce rich content. A rich representation complemented by
conceptual space exploration guided by narrative are pro-
posed as a solution for creative story generation. Accord-
ing to this hypothesis, making the simulation more complex
could provide more complex worlds and interactions and
therefore create a larger conceptual space traversable by the
narrative-based driving engine. The system will hypotheti-
cally be able to generate many different stories and partially
identify which ones are “better” according to a set of given
objectives.

Grounding Knowledge for Storytelling
For the simulation engine to be able to produce states con-
taining content suitable for narrative generation, an appro-
priate grounded representation and a corresponding set of
rules for creating that information are needed. This is a new
addition to STellA.

Grounding knowledge representation for story generation
requires a low level definition of concepts that are usually
defined in a more abstract way by most other generation
systems (Turner 1992; Pérez y Pérez 1999; Bringsjord and
Ferrucci 1999). This results in an additional effort from the
beginning since usual constructions inherited from logics as
in(knight, room) must be refined so as to represent data
better suited for simulation. In the previous example, in or-
der to represent exact position, the data would have to be-
come positionknight = (10, 20), assuming that (10, 20) is a
valid coordinate inside the room. This is the kind of knowl-
edge representation that the proposed system uses.

This approach requires a fixed representation in which ev-
ery construction or relation is grounded in the sense that the
system includes mechanisms to process that construction in-
ternally. This grounding permits meta-representation of the
world, which means that a mental state of the world, for in-
stance, can be represented using the same formalism.

This meta-representation STellA is provided with makes



knowledge representation possible at two different levels:
first, characters’ reasoning uses a set of rules that manage in-
complete knowledge (characters can ignore aspects of their
surrounding context). Then, the same set of rules is applied
to the simulated world, in which there is no uncertain in-
formation since the whole state is available. This implies a
relative reduced engineering effort compared with the main-
tenance of two different rule sets.

Domain rules are a determinant part in this model. Narra-
tive generation is a knowledge hungry process and any do-
main model is by definition incomplete (given the require-
ments of narrative this would imply modelling all human
knowledge). This makes it almost impossible to recreate the
needed amount of information in a single prototype, thus im-
posing the need to design a flexible, improvable system to
let it evolve over time and manage a richer set of knowledge
constructions.

In order to keep the rule set maintainable, rule coupling
has been reduced to a minimum in terms of the structure
of the rule set. Rules are organized in a linear way, mean-
ing that no hierarchical topology is imposed over the design.
This lets the maintainer include new rules without taking a
big structure into account. Additionally, rules can be en-
abled or disabled at will without affecting the rest of the
system since no rule is dependent on any other by design.
The semantic coupling between rules still exist, but this is
kept to a minimum.

For this independence of rules to be possible, a domain-
specific language for rules has been included as part of the
generation engine. The rules can query the world state and
output actions that represent changes in the story, as the next
section explains. Querying current state limits the scope
in which rules can act, which constraints rule creation and
makes them easier to produce. Rules cannot examine the
story but only the current simulation. In this way, narrative
processes are isolated.

STellA offers a set of primitives for querying the current
story so that the creation of these rules can be made without
knowing the representation details. Figure 1 shows an ex-
ample of objective rule for creating the story and the use of
the story-querying primitives that the current version of the
system provides the user with.

finished(story)← hs = humans(story)

hsd = inDungeon(story, hs)

length(hsd) == 0

Figure 1: Example of objective rule for the story generation
process. A story must satisfy this rule to be valid.

Rules are able to cope with incomplete knowledge in the
generation system, which is also a new addition in this
updated version of STellA. The meta-representation of the
world that characters have can be incomplete, and thus
some properties of the internal representations can have the
uncertain value. When characters reason to decide their

next action, use a simple unification mechanism to instance
the uncertain value with potentially valid grounded val-
ues. For instance, a character ignoring whether an enemy is
equipped with a weapon searches over the possibilities and
acts according the first plausible solution. More powerful
inferencing techniques will be used in future versions.

Non-deterministic generation of Narrative
Actions

If the described simulation process generates only one sin-
gle sequence of actions and corresponding states, the room
for creativity would be marginal. According to most frame-
works of computational and non-computational creativity,
the creation or exploration of a conceptual space, trying to
produce unexpected and valuable artifacts is a determinant
part of the creative process (Boden 1999; 2003).

This update of STellA performs the exploration of the cor-
responding conceptual space generatively, that is, iteratively
creating new states for subsequent simulation. This has been
modeled and implemented as a non-deterministic process in
which a certain simulation step can yield not one but many
steps. From a classical Artificial Intelligence perspective,
the conceptual space generated by STellA is a tree rooted
in the original state (the base state from which the gener-
ation happens). Each intermediate node of the conceptual
tree contains a partial simulation state that, when processed,
generates possibly many candidate states that can be subse-
quently expanded, in this way modelling non-determinism.

While state exploration works for expanding the concep-
tual space, connecting the simulation with the creation of
a narrative structure requires a more detailed process. The
grounded data coming from each generation step must be
processed carefully because the state changes that a simula-
tion step yields are heterogeneous from a narrative perspec-
tive.

The changes happening from a simulation state to the next
one that are produced in the non-deterministic expansions
are referred to as narrative actions, which are a new addi-
tion to STellA. During the development of the described sys-
tem the number of these actions has grown as more different
kinds were detected. It is important to note that the way in
which simulation is implemented in STellA affects the kind
of actions that are produced and thus its identification, but
the next list is likely to be applicable to other approaches as
well:

• Character perception actions define the parts of the sim-
ulation that are perceived by the characters. This includes
perceiving the surrounding objects, being aware of health
and position, updating or forgetting the position of an ob-
ject that has moved and so on. The generation of these ac-
tions are currently model as a non-deterministic process
in which perceptions have a probability to happen. The
algorithm then orders perceptions by probability, creating
sets of perceived elements non-deterministically. Percep-
tion actions are the link between the complete world hap-
pening in the simulation and the inner representation of it
that every agent in the story (every character) has.



• Deus ex actions are generated without any causal require-
ment. They must be consistent with the current state, but
do not need to respond to any character need of model.
Deus ex actions model events that are too serendipitous
to need a detailed model, like a character stumbling upon
a rock when running or raining. These actions are gener-
ated non-deterministically and have a probability of hap-
pening in their definition that is used by the generator to
order these actions by their chance of occurring and not
by pure randomness. This has been designed so to keep a
complete model not depending on random numbers.

• Character desires actions are the output of a reasoning
process that emulates character decisions. These deci-
sions include eating if the character is hungry, trying to
escape an enemy or maybe attacking him or her. These ac-
tions confer a relative degree of believability (Riedl 2004).
Character desires actions, which are generated in a non-
deterministic way, have both an associated probability and
a priority. This priority is used by the characters in the
next step of simulation to order desires and try to satisfy
the most prioritized ones first.

• Character intentions complete desires and perception so
as to reproduce a classic agent-like narrative model (Brat-
man 1987). Intentions are generated according to per-
ceptions (beliefs in the classic model) and desires, which
means that the representation of the external world in
not taken into account when creating intentions (only the
character’s internal representation). This allows for a
simpler creation of rules since less information must be
taken into account. Character intentions actions are non-
deterministic too and have an associate probability just
like the other kinds of actions. Trying to go to some loca-
tion that the character desires to be in or trying to attack
the enemy that the character desires to be dead are ex-
amples of intentions. The difference between doing and
trying to do is subtle but very influential in narrative gen-
eration since it permits richer character interaction.

• Physical world actions are non-deterministic and model
causality of physical events that, under certain conditions,
will necessarily happen with a certain probability. Things
that fall to the ground if nothing holds them or moving
an object if it is pushed with enough force are examples
of physical world actions. This kind of actions have the
additional role of representing success of failure of char-
acter intentions. In this way, a character can try an action
and the physical state will decide whether the intention
succeeded or not.

This division makes sense from the point of view of story
generation. The focus and detail on character behavior
is clear and considered to be very important in narrative.
This is complemented with serendipitous events and world
physics in a broad sense. Probabilities are used to order ac-
tions in such a way that the main algorithm produces candi-
date updated versions of the current state of the simulation
and gives priority to the most likely ones. Creativity can be
explored by choosing less likely states, which is planned as
part of the future enhancements of STellA.

These five kinds of narrative actions are extracted from
the simulation. Formally speaking, the output of each step
of the simulation non-deterministically yields a set of new
states along with their corresponding actions. This can be
formally described as:

〈state, e, p, d, i, w〉
where state is the current state of the simulation, e is the
set of deus ex actions generated from that step, p is the set of
character perception actions, d is the set of character desires
actions, i is the set of character intentions actions and w is
the set of physical world actions.

A fabula generated by STellA is then a list of tuples:

[〈state, e, p, d, i, w〉]
The generation can be represented formally in terms of a
generative function γ that accepts a state and returns a non-
deterministic set of tuples:

γ(state) = {〈state0, e0, p0, d0, i0, w0〉,
〈state1, e1, p1, d1, i1, w1〉,
. . .

〈staten, en, pn, dn, in, wn〉}
Having explained and formalize how to generate a con-

ceptual space of stories from a grounded simulation, it is
still necessary to complete the system by including a way to
traverse this space an find valuable artifacts, namely valid
stories.

Narrative Drives the Simulation: Curves,
Objectives and Constraints

Simulation is a flexible and powerful tool for representing
the state of a story and the transitions between states. How-
ever, producing a sequence of states that, when appropriately
rendered, are acceptable as a narrative, requires control over
the generation. STellA uses three types of mechanisms to
drive the simulation: objectives, constraints and narrative
curves.

The presented generation process is fed with a set of ob-
jectives that the story must satisfy in order to be suitable to
be accepted as finished and valuable by the system. This
version of the story generation system models objectives as
a group of boolean functions receiving a story. The user can
thus use these to create declarative definitions of the kind of
wanted story. Objectives are used post-hoc. When a partial
story is reached by the system, it is checked against the set
of these objectives and all of them must accept the story as
valid. Figure 1 shows an example.

Along with objectives, providing the system with means
to restrict the generation is needed. Non-determinism in
story generation is a powerful modelling tool, but unre-
stricted production of stories degenerates in a very big con-
ceptual space whose whole traversal is intractable (León and
Gervás 2010). This is not only consistent from a computa-
tional perspective but also from the point of view of creativ-
ity in story generation: the set of stories that can be gener-
ated from any starting state is very large.



This characteristic is inherent to the domain of story pro-
duction and cannot be eluded. The computational generation
can, however, filter out those intermediate states that are not
promising and should not be explored, as humans seemingly
do (Sharples 1999). The current model uses constraints for
avoiding exploring branches of the traversal process that are
unpromising. The implementation of constraints is analo-
gous to the implementation of objectives as constraints are
defined in terms of declarative rules using the same kind of
formalism and query primitives. Constraints, however, are
used in the generation during the expansion of new states to
be simulated and forbid the exploration of those candidates
states that do not satisfy them.

The use of constraints compared to objectives therefore
leads to a less strict definition. In practical terms, constraints
are usually less restrictive with regard to their scope: experi-
ence suggests that constraints are defined in term of specific
features that a story should not have, while objectives tend
to describe general aspects of a narration. Figure 3, showing
an example of a constraint, exemplifies this.

promising(story)← hs = humans(story)

∀hi ∈ hs :

∀hd ∈ hs− {hi} :
di = distance(story, hi, hd)

av = average(d0, d1, . . . , dn)

av <= threshold

Figure 2: Example of constraint rule. A partial story not
satisfying a constraint rule will not be accepted as promising
and its corresponding state will not be explored.

STellA uses a generalized version of tension curves to
drive story generation. The design of these curves as a way
to drive plot generation has been studied in previous ver-
sions of STellA (León and Gervás 2011; León and Gervás
2012). The main objective underlying this method is to rep-
resent the evolution of a set of narrative properties of a story
as curves. As the conceptual space is traversed to find a suit-
able story, this evolution is iteratively compared with a set
of objective curves. This comparison informs the traversal
on every step and this information can be used as an addi-
tional source for deciding when a partial story is promising
and whether a story is finished.

Previous versions of STellA also considered these methods
for plot generation, but they were applied differently. Objec-
tives and constraints did were not as powerful as they are in
this version regarding their both their expressive power and
their scope. While the current version allows for evalua-
tion of a complete story, previously only states were consid-
ered, additionally, full access to the world representation is
allowed now. Curves have a more general definition now
since they define generic metrics (distances, average val-
ues and others) and previous versions needed more elabo-
rated definitions. This has been made easier by the use of a
simulation-based representation.

Algorithm 1 describes the overall generation algorithm.
The non-determinism occurs, as previously described, when
generating candidate sets of deus ex, character desires and
character intentions actions. The generation algorithm it-
erates until a satisfying story is found and filters those ex-
ploratory branches that are unpromising according to the
constraints imposed in the execution.

Data: the current partial story [〈state, e, p, d, i, w〉]
objective curves
objective function
constraint function
Result: a set of candidate new tuples
while current story is not finished according to curves
and objectives do

σ←− last state tuple from current story
p←−−non-det perception for σ ordered by probability
e←−−non-det deus ex for σ ordered by probability
d←−−non-det desire for σ ordered by probability
i←−−non-det intention for σ ordered by probability
w←−−non-det physical world for σ ordered by probability
σ′ ← apply (e, p, d, i, w) to σ
curvesσ′ ← compute current curves for σ′
new story←− current story + σ′

if curvesσ′ ≈ curvesobjective∧ new story satisfies
constraints then

foreach σ′ do
explore generation from σ′

end
else

reject σ′
end

end
return current story
Algorithm 1: Story generation algorithm in STellA

Example Output
The described model has been implemented in three main
modules:

1. The core engine for generating stories, containing the
non-deterministic algorithms and basic narrative data
structures.

2. The simulation engine defining the basic data structures
and rules for the simulation to happen.

3. The set of rules both for generating actions and for defin-
ing story objectives.

The core engine (1) corresponds to the implementation of
Algorithm 1 and the simulation engine (2) has been imple-
mented according to the model previously described. A rule
set (3) for an example prototype has been created for demon-
stration purposes. This rule set and the sample world place
the action in a dungeon from which humans must escape.

The simulated world is a two-dimensional grid in which
every entity is placed in one single cell. Basic actions of



characters are move in eight directions, attack adjacent en-
emies, eat food, escape, protect themselves and others,
take and drop objects and apply objects on other entities
(for healing an ally, for instance). Characters and creatures
can sense their surroundings and use an A∗ based pathfinder
to go from one place to another. Characters loose energy for
being injured and doing things. The initial state includes 3
humans (located at one edge of the dungeon) and 5 creatures
(located at the opposite edge, nearby the exit). Humans de-
sire to escape and creatures are hungry and will try to eat the
humans. Food, shields and weapons are spread out over the
dungeon (10 items in total). The layout of the dungeon and
the location of objects have been randomized.

Three objective curves have been used to drive the gener-
ation in this example. These curves have simple definitions
and try to capture the evolution of measurable aspects of the
story that, in the current domain, match to some extent spe-
cific features of the narrative arc:

• danger, the perceived danger in the story, computed as the
mean distance between humans and creatures.

• success, the level of success of characters, computed as
the difference between humans that have escaped the dun-
geon and the number of humans that have died.

• richness, an additional measurement to ensure that the
generation is rich enough, computed as the number of dif-
ferent actions that happen in the story. Richness avoids
monotonous stories in which characters just find their way
to the exit without any conflict.

The input objective curves for the generation are a
monotonously increasing line for danger, richness and suc-
cess, forcing the generation to produce a story with an end-
ing in which many things have happened (richness), the
creatures surround the characters at the end (danger) and all
characters escape (success).

In order to keep the demonstration prototype simple, one
single objective function has been used: no humans must
remain in the dungeon (Figure 1). Analogously, the only
constraint used for the example forbids states in which the
group of humans splits up, the average distance between hu-
mans must be lower that a certain threshold (Figure 3).

An example execution would start as follows: the gener-
ation starts as shown in Algorithm 1. First, the initial state
is tested against the objective function which is not satisfied
because there are 3 humans in the dungeon. Perception ac-
tions are computed and every cognitive entity (humans and
creatures) update their internal representation of the world
with their surrounding area. Deus ex rules are processed
and no action is triggered, then desire rules are examined. A
human with low energy desires to get food with a high prior-
ity (escaping is postponed) and the other two still decide to
escape. All creatures decide to look for food. When inten-
tion actions are generated, all characters decide to move to
find what the desire and this move is realized as a successful
physic action because no obstacle limits their movement.

After this step, the current values for the objective curves
are computed and compared against the objective curves.
The difference between the current and the objective curves

is acceptable by the system (being the first step yields the re-
sulting comparison negligible according to the thresholds).
This state is thus valid and new other candidates from the
initial state are similarly generated and filtered. Then one of
this states in chosen (the current prototype choses the one
with a higher number of actions) and the generation contin-
ues until the system has found a satisfying story.

Then, the sequence of states and their corresponding ac-
tions are converted into a textual story. The rendering of the
generated fabula as a discourse has been carried out with
simple, ad-hoc rules to improve the apparent result. Figure 5
shows an example. Some redundant, easy to infer events and
states were filtered (Figure 4) and sequential order was used
(that is, events are told in the same order as they occur). The
focus on the current prototype has not been put on the qual-
ity of the discourse and only a simple method has been used.
Better narrative discourse planning, however, will be tack-
led in future versions of STellA. Figure 6 shows a fragment
of the rendered output. The fragment has been selected by
hand, but the whole story has been taken as-is without any
form of curation or human intervention. Figure 7 shows part
of the underlying representation corresponding to the text in
Figure 6. The example shown corresponds to the sentence
“the knight was hungry”.

promising(story)← hs = humans(story)

∀hi ∈ hs :

∀hd ∈ hs− {hi} :
di = distance(story, hi, hd)

av = average(d0, d1, . . . , dn)

av <= threshold

Figure 3: Example of constraint rule. A partial story not
satisfying a constraint rule will not be accepted as promising
and its corresponding state will not be explored.

The fragment chosen and shown in Figure 6 exemplifies
the level of detail that STellA is able to achieve. Specific fo-
cus on some generated events can shed more light on what
STellA is able to do. For instance, when the knight is injured
by the attack of the red creature, a new set of possible next
steps in the simulation are generated. In some of them, the
barbarian is not aware of the event and thus there is no reac-
tion. According to the rules, these have a low probability of
happening because the barbarian and the knight are nearby.
In some others, chosen before because of their higher prob-
ability, the barbarian detects the attack. Since there is a rule
stating that humans defend themselves against the creatures,
the barbarian could non-deterministically choose what to do,
either defend or ignore the knight. The system performs a
space search to choose the best option among these two, that
is, non-deterministically explores partial simulations from
the current one and chooses the chain that fits the curves
better. Since defending the knight maximizes the number
of alive heroes, that one is chosen. In this way, the simu-
lation and the narrative-based conceptual space search pro-



[. . . ]

if event action is "pass" then

filter event

end

if event action is "move" and

character does not face enemy then

filter event

if event action is "get tired" and

character’s energy > 100 then

filter event

end

[. . . ]

Figure 4: Simple event filtering for demonstration purposes.
The current prototype includes ad-hoc rules for redundant or
excessively detailed events.

duce rich, meaningful stories.
The grounded representation allows a fine level of granu-

larity in the action and the narrative information leads to rel-
atively interesting scenes according to the formal metrics de-
scribed in term of narrative curves and specific requirements
encoded as objectives and constraints. Generating detailed
interactions can provide rich content that an accurate dis-
course planner can aggregate where needed. However, this
does not mean that any form of verbose or redundant gener-
ation can be easily fixed by a discourse planner. The content
generator should be able to provide reasonably meaningful
and useful content letting the discourse planner decide what
is relevent for each kind of discourse.

Discussion
The empirical evidence during the development suggests
that the initial effort needed for grounding knowledge pays
off soon. While more research and comparable measure-
ments are needed to make any strong claim, the development
process and the relative effort to include rules in the system
is relatively reduced as the system evolves.

As previously detailed, many simulation-based story gen-
eration systems have already been created. STellA con-
tributes to the field by focusing on creativity and explo-
ration of a conceptual space. More specifically, several stud-
ied story generation systems perform a guided simulation in
which some sort of general objectives (be it author or charac-
ter goals) are pursued and fulfilled in a valid story (Lebowitz
1985; Dehn 1981; Theune et al. 2003). While the con-
junction of goals and simulation links these systems with
the presented version of STellA, the taken approach here is
conceptually different: the simulation happens with no nar-

[. . . ]

if kindOf(entity) = ”knight” then

print "the knight "

end

if energy(entity) < 1500 then

print "was hungry"

end

ifenergy(entity) < 1500 then

print "blocked "

print attackerOf(entity)

print " with "

print objectDefense(entity)

end

[. . . ]

Figure 5: Example rule for discourse and textual genera-
tion in STellA. The current version addresses simple text for
demonstration purposes.

rative information and the simulation is let to progress non-
deterministically thus producing a growing tree of plausi-
ble states. Narrative is only included as an external process
in which these successive simulations are selected as par-
tial artifacts in the conceptual space. This puts a clear divi-
sion between content generation with robust grounded gen-
eration and detailed filtering based on narrative rules. This
somehow resembles the engagement and reflection model
described by Sharples (Sharples 1999) and implemented in
MEXICA (Pérez y Pérez 1999) in the sense that a model of
creativity receives the focus.

Other story generation systems rely on the underlying
narrative-like features of logging the simulation of character
actions and put little or no effort on making an explicit nar-
rative model (Klein et al. 1973; Meehan 1977). This clearly
contrasts with the approaches taken by STellA, which specif-
ically focus on using narrative to control which simulations
are plausible according to the current objectives.

STellA explicitly addresses creativity both as a model and
as objective. From a theoretical point of view and accord-
ing to the theoretical framework described by Boden (Boden
2003) and formalized by Wiggins (Wiggins 2006), the non-
deterministic simulation process would generate the concep-
tual space, and the mechanisms described to select and filter
states would match the definition of the traversal function.
The evaluation function would be composed by a mix of the
curves and the objective function. The current prototype,
however, is not reaching any high form of narrative creativ-
ity. The kind of story generation that STellA tries to achieve
necessarily implies a complex management of knowledge
and narrative structures. Before trying to create highly valu-



[. . . ]
the knight was hungry.
the barbarian was injured.
the knight desired to protect the barbarian.
the green creature wanted to eat the barbarian.
the green creature tried to attack the barbarian.
the knight blocked the green creature with the shield.
the red creature tried to attack the knight.
the red creature succeeded when trying to attack the knight.
the knight was injured.
the barbarian desired to protect the knight.
the barbarian used the healing potion on the knight.
the barbarian desired to attack the green creature.
the knight desired to protect the barbarian.
the green creature tried to attack the barbarian.
the knight failed to block the green creature with the shield.
the green creature succeeded when trying to attack the
barbarian.
the barbarian died.
the knight took the sword.
the knight desired to attack the green creature.
the knight tried to attack the green creature.
the knight succeeded when trying to attack the green
creature.
the green creature died.
[. . . ]

Figure 6: Fragment of a resulting story generated by
STellA after the narrative-driven simulation process.

”knight0” : {position : (5, 51),

energy : 1288,

desire : {
desire : ”escape”,

agent : ”knight0”

},
items : {”shield0”},
kindOf : ”knight”,

strength : 100,

speed : 3,

sight : 7,

weigth : 90,

known : {
”knight0” : {...},
”creature0” : {...},
”wall26” : {...},
”wall27” : {...},
[. . . ]

}
}

Figure 7: Fragment of the underlying representation corre-
sponding to the text in Figure 6.

able stories, the detailed development line tries to build a
robust framework that can be further improved with more
knowledge. The preliminary results show that world repre-
sentation can be made richer by simulation and that a cre-
ative process can be model by non-deterministic generation
and explicit filtering and identification of valuable artifacts.

Conclusions and Future Work
Simulation is a powerful tool for modelling interactions and
can produce grounded information. This information, when
properly identified, can be used for driving story generation
when enriched with narrative knowledge and generate a con-
ceptual space of stories.

This paper has described the development of an updated
version of STellA, a story generation system that implements
this model that mixes simulation and conceptual space ex-
ploration driven by narrative constructions. An example
output generated by the current implementation is described
and the relative benefits and drawbacks of the proposed so-
lution are discussed.

The system will continue to be developed according the
discussed assumptions, namely that generating successive
story states by simulating relations between characters and
constructing a conceptual space by using narrative informa-
tion is a plausible method for generating rich stories that can
be deemed as creative by unbiased observers (Colton and
Wiggins 2012). Thorough work, however, is still to be done
for the system fully support these assumptions: the simu-
lation must support richer constructions and the generation
process based on narrative must be improved with more gen-
eral information about narrative, probably with general mod-
els borrowed from narratology.

Studying how driven non-determinism and probabilities
can lead to better results in terms of novelty is a key as-
pect of the future improvements of STellA. The future work
contemplates producing and evaluating stories that include
unlikely events in such a way that novelty and quality are
ensured to some measurable extent.
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