
Optimizing Planar and 2-Planar Parsers with MaltOptimizer

Optimizando los Parsers Planar y 2-Planar con MaltOptimizer

Miguel Ballesteros†, Carlos Gómez-Rodŕıguez‡, Joakim Nivre§
†Universidad Complutense de Madrid, Spain

‡Universidade da Coruña, Spain
§Uppsala University, Sweden

miballes@fdi.ucm.es, carlos.gomez@udc.es, joakim.nivre@lingfil.uu.se

Resumen: MaltOptimizer es una herramienta capaz de proporcionar una opti-
mización para modelos generados mediante MaltParser. Los analizadores de depen-
dencias actuales requieren una completa configuración para obtener resultados a la
altura del estado del arte, y para ello es necesario un conocimiento especializado.
Los analizadores Planar y 2-Planar son dos algoritmos diferentes y de reciente incor-
poración en MaltParser. En el presente art́ıculo presentamos cómo estos dos anal-
izadores pueden incluirse en MaltOptimizer comparándolos con el resto de familias
de algoritmos incluidas en MaltParser, y cómo se puede definir una búsqueda y se-
lección de atributos (o “features”) usando el propio sistema para estos dos parsers.
Los experimentos muestran que usando estos métodos podemos mejorar la precisión
obtenida hasta un porcentaje absoluto del 8 por ciento (labeled attachment score)
si lo comparamos con una configuración básica de estos 2 parsers.
Palabras clave: Análisis sintáctico de dependencias, MaltOptimizer, MaltParser,
Planar y 2-Planar

Abstract: MaltOptimizer is a tool that is capable of finding an optimal configura-
tion for MaltParser models, taking into account that nowadays dependency parsers
require careful tuning in order to obtain state-of-the-art results, and this tuning
is normally based on specialized knowledge. The Planar and 2-Planar parsers are
two different parsing algorithms included in MaltParser. In the present paper, we
show how these two parsers can be included in MaltOptimizer processes comparing
them with the rest of MaltParser algorithm families, and how we can define a deep
feature search and selection by using MaltOptimizer for these two algorithms. The
experiments show that by using MaltOptimizer we can improve parsing accuracy for
Planar and 2-Planar parsers by up to 8 percent absolute (labeled attachment score)
compared to default settings.
Keywords: Dependency parsing, MaltOptimizer, MaltParser, Planar and 2-Planar

1. Introduction

Data-driven applications are very useful
because as soon as we have new data, they
can be applied to different domains just by
training the new models. However, this train-
ing normally requires careful tuning in order
to obtain a reliable outcome. MaltOptimizer1

(Ballesteros and Nivre, 2012b; Ballesteros
and Nivre, 2012a) automates2 the search of
an optimal configuration for models obtained
with MaltParser (Nivre, Hall, and Nilsson,
2006), which is a typical example of a widely

1http://nil.fdi.ucm.es/maltoptimizer
2MaltOptimizer is fully automatic and it can be

run in batch mode, but it also allows an interaction
with the user between phases.

used data-driven system. This requires find-
ing preliminary parameters, such as the han-
dling of covered roots or multiple root la-
bels, selecting the parsing algorithm that
best suits the data, and finally, a backward
and forward feature selection with the inten-
tion of making use of all the possible infor-
mation included in the data format. Malt-
Optimizer is an expert system, since it was
built by using previous experience in the op-
timization of MaltParser models during the
last years.

MaltParser, which is a transition-based
dependency parser with state-of-the-art per-
formance for many languages, was one of
the top parsers in the CoNLL Shared Tasks

on dependency parsing (Buchholz and Marsi,
2006; Nivre et al., 2007). It implements
different families of transition-based parsing
algorithms: (i) Nivre’s algorithms (Nivre,
2003; Nivre, 2008), (ii) Covington’s algo-
rithms (Covington, 2001; Nivre, 2008), and
(iii) Stack algorithms (Nivre, 2009; Nivre,
Kuhlmann, and Hall, 2009). However, there
is another family that was not handled by
the initial version of MaltOptimizer: (iv) the
Multiplanar parsers (Gómez-Rodŕıguez and
Nivre, 2010), which include two algorithms:
the Planar parser and the 2-Planar parser.
These are linear-time algorithms that cover
the sets of multiplanar dependency struc-
tures described by Yli-Jyrä (2003): while
the Planar parser is limited to dependency
graphs with no crossing arcs, which are a
rather tight superset of projective depen-
dency graphs, the 2-Planar algorithm sup-
ports the vast majority of phenomena present
in natural language treebanks, and does so
in linear time and with competitive accu-
racy (Gómez-Rodŕıguez and Nivre, 2010).3

For these reasons, the Planar and 2-Planar
algorithms have been used in several appli-
cations and studies in recent literature (Ott
and Ziai, 2010; Krivanek and Meurers, 2011;
Beuck, Köhn, and Menzel, 2011; Gómez-
Rodŕıguez and Fernández-González, 2012a;
Gómez-Rodŕıguez and Fernández-González,
2012b).

This is why we believe it necessary to in-
clude the Multiplanar parsers in MaltOpti-
mizer, and in this paper we present how we
addressed this problem. We present how the
Multiplanar parsers can be included into the
system decision trees and how we refined the
feature selection for these parsers.

In the rest of the paper, we introduce
transition-based dependency parsing and the
Planar and 2-Planar parsers (Section 2). We
describe MaltOptimizer in a deeper way by
also citing some similar systems and the mod-
ifications that we included in order to host
these parsers (Section 3). We report ex-
periments, showing how MaltOptimizer finds

3In theory, the Multiplanar family of parsers is
an infinite hierarchy of parsers with increasing cov-
erage (an m-Planar parser can be defined for any
natural number m). However, only the parsers with
m = 1 and m = 2 have been implemented in Malt-
Parser because the 2-Planar parser already has a very
large coverage of non-projective phenomena (Gómez-
Rodŕıguez and Nivre, 2010), so the practical interest
of m-Planar parsers with m > 2 is dubious.

suitable parameters and feature models when
the Multiplanar parsers are selected (Sec-
tion 4). Finally, we show conclusions and
plans for future work (Section 5).

2. The Planar and 2-Planar
Dependency Parsers

Given a sentence w1 . . . wn, the goal of a
dependency parser is to assign it a depen-
dency graph, which is a directed graph G =
(V,A) where V = {1, . . . , n} and A ⊆ V ×V .4

We will assume that such dependency analy-
ses are required to satisfy the acyclicity con-
straint (i.e. that the graph cannot have cy-
cles) and the single-head constraint (that a
node cannot have more than one incoming
arc).

Transition-based dependency parsers as-
sign dependency analyses to natural lan-
guage sentences by using non-deterministic
state machines, called transition systems,
whose actions (transitions) manipulate in-
put words and build dependency relations
between them. The choice of the particu-
lar sequence of actions to parse each given
sentence is performed by scoring transitions
using a model learned from training data,
and using these scores to select a suitable
transition sequence. In the particular case
of MaltParser, SVM classifiers are used to
learn the model, and the selection of a tran-
sition sequence is done by greedy deter-
ministic search, which proceeds by choosing
the highest-scoring transition at each parser
state.

The Planar and 2-Planar parsers, in-
troduced by Gómez-Rodŕıguez and Nivre
(2010), are among the parsing algorithms im-
plemented in MaltParser. These algorithms
use the transition systems shown in Figure 1.
We give here a brief description of how both
parsers work, a more thorough explanation
can be found in Gómez-Rodŕıguez and Nivre
(2010).

The Planar parser, like other algorithms
implemented in MaltParser, uses two data
structures to manipulate input words: a
buffer, which holds the words that have not
yet been read, and a stack, containing words
that have already been read but that we still
may wish to connect to other words via de-
pendency arcs. The Shift transition is used

4In practice, the arcs in the set A are labeled, but
we ignore arc labels in this explanation for simplicity
of presentation.

Planar transition system:
Initial/terminal configurations: cs(w1 . . . wn) = 〈[], [1 . . . n], ∅〉, Cf = {〈Σ, [], A〉 ∈ C}
Transitions: Shift 〈Σ, i|B,A〉 ⇒ 〈Σ|i, B,A〉

Reduce 〈Σ|i, B,A〉 ⇒ 〈Σ, B,A〉
Left-Arc 〈Σ|i, j|B,A〉 ⇒ 〈Σ|i, j|B,A ∪ {(j, i)}〉

only if @k | (k, i) ∈ A (single-head) and A ∪ {(j, i)} is acyclic.

Right-Arc 〈Σ|i, j|B,A〉 ⇒ 〈Σ|i, j|B,A ∪ {(i, j)}〉
only if @k | (k, j) ∈ A (single-head) and A ∪ {(i, j)} is acyclic.

2-Planar transition system:
Initial/terminal configurations: cs(w1 . . . wn) = 〈[], [], [1 . . . n], ∅〉, Cf = {〈Σ0,Σ1, [], A〉 ∈ C}
Transitions: Shift 〈Σ0,Σ1, i|B,A〉 ⇒ 〈Σ0|i,Σ1|i, B,A〉

Reduce 〈Σ0|i,Σ1, B,A〉 ⇒ 〈Σ0,Σ1, B,A〉
Left-Arc 〈Σ0|i,Σ1, j|B,A〉 ⇒ 〈Σ0|i,Σ1, j|B,A ∪ {(j, i)}〉

only if @k | (k, i) ∈ A (single-head) and A ∪ {(j, i)} is acyclic.

Right-Arc 〈Σ0|i,Σ1, j|B,A〉 ⇒ 〈Σ0|i,Σ1, j|B,A ∪ {(i, j)}〉
only if @k | (k, j) ∈ A (single-head) and A ∪ {(i, j)} is acyclic.

Switch 〈Σ0,Σ1, B,A〉 ⇒ 〈Σ1,Σ0, B,A〉

Figure 1: The planar and 2-planar transition systems. Note that we use the notation Σ|i for a
stack with i at the top and tail Σ, and i|B for a buffer with i as its first word and tail B.

to read the first word from the buffer, moving
it to the stack. The Left-Arc and Right-
Arc transitions create a leftward (rightward)
dependency arc involving the topmost stack
node and the first node remaining in the
buffer, and can only be executed if this arc
does not create a cycle or violate the single-
head constraint when combined with the al-
ready created arcs. Finally, the Reduce
transition can be employed to remove a word
from the stack when we do not need to cre-
ate more arcs using it. This set of actions
allows the Planar parser to build any depen-
dency graph that is planar, i.e., not contain-
ing crossing arcs. Note that planarity is a
very mild relaxation of the well-known no-
tion of projectivity, meaning that the practi-
cal coverage of the planar parser is only very
slightly larger than that of projective depen-
dency parsers.

To expand this coverage further and ob-
tain a parser that would be able to analyze
in linear time the vast majority of depen-
dency structures present in natural language
treebanks, the Planar parser was extended
by adding an extra stack, obtaining the 2-
Planar parser. The 2-Planar parser is capable
of building any dependency graph that can
be divided into two subgraphs (planes) that
are planar. To do so, it uses two stacks, one

per plane, such that one of them is marked
as the active stack at each given configura-
tion, the other being the inactive stack. The
Shift transition works analogously to that in
the Planar parser but it moves the first word
in the buffer to both stacks. The Reduce,
Left-Arc and Right-Arc transitions also
work like their Planar counterparts, but they
involve only the active stack. Finally, an ad-
ditional Switch transition makes the active
stack inactive and vice versa.

The paper by Gómez-Rodŕıguez and Nivre
(2010) shows that the 2-Planar parser can
produce results that are on par with well-
known state of the art dependency parsers,
like the arc-eager pseudo-projective parser by
Nivre et al. (2006).

3. MaltOptimizer

MaltOptimizer (Ballesteros and Nivre,
2012b; Ballesteros and Nivre, 2012a) imple-
ments a search of different parameters for
MaltParser based mainly on the heuristics
described by Nivre and Hall (2010) and previ-
ous experience acquired during the last years.
MaltOptimizer takes a single input, which is
a training set in CoNLL data format,5 and re-
turns suggestions of an optimal configuration

5http://ilk.uvt.nl/conll/#dataformat

for MaltParser models, providing a complete
option file and a feature specification file.

MaltOptimizer also estimates the ex-
pected results by providing labeled attach-
ment score results (LAS) (Buchholz and
Marsi, 2006).6 It only explores linear multi-
class SVMs in LIBLINEAR (Fan et al., 2008),
excluding LIBSVM (Chang and Lin, 2001)
for efficiency reasons. It has been observed
that the expected outcomes are similar be-
tween both libraries but LIBLINEAR takes
much less running time. This fact makes
the experiments shown in this paper even
more interesting, because most of the feature
models that have been obtained manually for
Multiplanar parsers are based on LIBSVM
(Gómez-Rodŕıguez and Nivre, 2010; Gómez-
Rodŕıguez and Fernández-González, 2012a;
Gómez-Rodŕıguez and Fernández-González,
2012b).

It is worth noting that both LIBSVM and
LIBLINEAR provide outcomes in the same
range of accuracy, or as stated in (Prud-
hvi Kosaraju and Kukkadapu, 2010) or
(Gómez-Rodŕıguez and Fernández-González,
2012b), LIBLINEAR can even provide better
results than LIBSVM.

There are some other systems with the
same intention as MaltOptimizer, due to the
importance of feature selection and param-
eter optimization in machine-learning based
systems. However, in the NLP commu-
nity, the set of such systems is very limited.
We can find feature selection and parame-
ter optimization systems, such as Kool, Za-
vrel and Daelemans (2000) and Daelemans
et al. (2003). More recently, Nilsson and
Nugues (2010) explored automatic feature se-
lection specifically for MaltParser, but Malt-
Optimizer is the first system that implements
a complete customized optimization process
for this system and for a big set of algorithms.

MaltOptimizer is divided in three different
phases: (i) data analysis, (ii) parsing algo-
rithm selection and (iii) feature selection. In
the following subsections we describe each of
them and we show the modifications that we
had to make in order to host the Multiplanar
parsers in the MaltOptimizer processes.

6In the default settings, it provides LAS including
punctuation symbols, but it can be configured exclud-
ing punctuation symbols and excluding the labeling
returning unlabeled attachment scores (UAS).

3.1. Phase 1: Data Analysis

In the first phase, MaltOptimizer gathers
some information that leads the optimization
for the following phases. Some of the prop-
erties are crucial in order to select the best
parsing algorithm, which makes them very
important due to the aim of the present pa-
per.

1. Size of the training set: number of
words/sentences.

2. Existence of “covered roots” (arcs span-
ning tokens with HEAD = 0).

3. Frequency of labels used for tokens with
HEAD = 0.

4. Percentage of non-projective arcs/trees.

5. Existence of non-empty feature values in
the LEMMA and FEATS columns.

6. Identity (or not) of feature values in the
CPOSTAG and POSTAG columns.

In order to host Multiplanar parsers, we did
not change the behavior of the first phase at
all. The first three properties are used to set
basic parameters, such as the way of handling
covered roots by the model; 4 is used in the
choice of parsing algorithm (phase 2), and for
Multiplanar parsers it is basically the same
as for other algorithms, the modifications are
shown in the Phase 2 description; 5 and 6
are relevant for feature selection experiments
(phase 3).

3.2. Phase 2: Parsing Algorithm
Selection

The original version of MaltOptimizer
handled three different groups of transition-
based parsing algorithms: (i) Nivre’s al-
gorithms (Nivre, 2003; Nivre, 2008), (ii)
Covington’s algorithms (Covington, 2001;
Nivre, 2008), and (iii) Stack algorithms
(Nivre, 2009; Nivre, Kuhlmann, and Hall,
2009). However, this initial release was not
able to handle Multiplanar parsers (Gómez-
Rodŕıguez and Nivre, 2010), which is basi-
cally the goal of this paper. The Multipla-
nar group of algorithms contains algorithms
that can handle non-projective dependency
trees (2-Planar or 2-Planar arc-eager parser),
and a roughly projective7 version (Planar or
Planar arc-eager) that can be combined with

7As mentioned above, the Planar parser has cover-
age over the set of planar dependency graphs, which
is a rather tight superset of the set of projective de-
pendency graphs.

Figure 2: New decision tree for best projec-
tive algorithm in which Planar arc-eager is
considered.

pseudo-projective parsing to recover non-
projective dependencies in post-processing by
using the pseudo-projective parsing approach
(Nivre and Nilsson, 2005).

MaltOptimizer has two different decision
trees, the first one is only used if the number
of non-projective dependencies in the train-
ing set is small (or zero), and the second one
is used if the number of non-projective trees
is not zero. Therefore, for most of the lan-
guages both decision trees were explored in
previous experiments (Ballesteros and Nivre,
2012b), with some exceptions, such as Chi-
nese.8

We needed to locate the Multiplanar
parsers in the decision trees in order to be
able to select them as best parsers. Planar
arc-eager has the same parsing order and a
similar way of handling left and right attach-
ments as Nivre arc-eager, this is why we lo-
cate it in the same branch in which the main
parent is Nivre arc-eager, making a compari-
son with Covington projective. The new pro-
jective decision tree is shown in Figure 2.

When the training set contains a substan-
tial amount of non-projective dependencies,
the older version of MaltOptimizer tests the
non-projective versions of Covington’s algo-
rithm and the Stack algorithm (including
a lazy and an eager variant), and also the
projective algorithms in combination with
pseudo-projective parsing. We have 2-Planar
arc-eager and Planar arc-eager, which is a
(roughly) projective parsing algorithm, run
in combination with pseudo-projective pars-
ing. Therefore, according to parsing order
the Multiplanar parsers are classified with
Covington and arc-eager. The new non-
projective decision tree is shown in Figure 3.

At the end of Phase 2, if 2-Planar arc-
eager has been selected as best option, then
MaltOptimizer tries with and without its

8To check statistics about non-projectivity
in the training corpora, please visit
http://ilk.uvt.nl/conll/paper submission.html#table

Figure 3: New decision tree for best
non-projective algorithm (+PP for pseudo-
projective parsing) in which Planar arc-eager
and 2-Planar arc-eager are considered.

-2pr option, which can improve performance
for some datasets by applying a Reduce
transition automatically after each Switch
transition. There is also a -prh option, gov-
erning whether root arcs from the artificial
root node 0 are constructed explicitly by the
algorithm or left to be added automatically
after parsing, and MaltOptimizer also ex-
plores it in order to find the best possible
configuration.

3.3. Phase 3: Feature Selection

Once MaltOptimizer has gathered the pre-
liminary parameters and the best parsing al-
gorithm for the input data, it starts with the
more challenging problem: the feature selec-
tion. MaltOptimizer tunes the feature model
given all the parameters chosen so far, such
as the parsing algorithm. It starts with de-
fault feature models for each parsing algo-
rithm and then it tries with a greedy fea-
ture selection. In order to host Multiplanar
parsers, we needed to modify the behavior in
some cases. However, it is worth noting that
the new processes are similar to the ones al-
ready implemented for Nivre arc-eager.

The features in MaltOptimizer can be ex-
plained dividing them into different feature
windows: (i) part-of-speech, (ii) morphol-
ogy, (iii) partially built dependency structure
(dependency relation features), (iv) coarse
grained part-of-speech, (v) extra morpho-
logical features such as gender or number
(FEATS column) and (vi) lemma features.9

For each window, it tries with backward se-
lection experiments to ensure that all features
in the default model for the given parsing al-
gorithm are actually useful. After that, the
system proceeds with forward selection ex-
periments, trying potentially useful features

9For an explanation of the different feature
columns see (Buchholz and Marsi, 2006) or see
http://ilk.uvt.nl/conll/#dataformat

one by one.
The major steps (and modifications to in-

clude Multiplanar parsers) of the feature se-
lection experiments are the following:

1. Tune the window of POSTAG n-grams
over the parser state.

It has been observed empirically
(Gómez-Rodŕıguez and Nivre,
2010) that the planar algorithm
tends to benefit from adding more
features than in arc-eager, so for
Multiplanar parsers we extend the
search a bit over the buffer and the
parser state.

For 2-Planar arc-eager we needed
to distinguish between the active
stack and the inactive stack, adding
possible features involving the in-
active stack when they are avail-
able (see Section 2). This fact was
a challenge, because the inactive
stack data structure is something
new that is not available in any
other parsing algorithm.

2. Tune the window of FORM features
over the parser state. We added the
same modifications as the ones added for
POSTAG feature selection.

3. Tune DEPREL and POSTAG features
over the partially built dependency tree.

4. Add POSTAG and FORM features over
the input string.

5. Add CPOSTAG, FEATS, and LEMMA
features if available. For 2-Planar arc-
eager, MaltOptimizer tries with new fea-
tures for the inactive stack when availa-
ble.

6. Add conjunctions of POSTAG and
FORM features.

Additionally, while in Nivre’s arc-eager
parser the first word in the buffer cannot be
linked to any other, in Multiplanar parsers
this can (and does) happen, so it makes sense
to have features using the head word and de-
pendency label associated with the first po-
sition of the buffer (Input[0]). This is a gen-
eral modification that we included all over
the process when Planar and 2-Planar are se-
lected as best parsers.

4. Experiments

In this Section we present two differ-
ent sets of experiments with corpora from

the CoNLL-X Shared Task on multilingual
dependency parsing (Buchholz and Marsi,
2006). We force the optimizer (by using the
possible interaction between phases) to use
Planar arc-eager and 2-Planar arc-eager as
selected parsing algorithms,10 in order to run
a full feature selection for these two parsers
and to observe how far we can go with the
updated feature selection.

Table 1 shows the results for all the Malt-
Optimizer phases. Default and Phase 1
columns present the outcomes of the first
phase in which Nivre arc-eager was se-
lected as default parsing algorithm. Phase 2
columns, is divided in 2, in which we show
the results of Planar and 2-Planar.11 Fi-
nally, in Phase 3, we show the results of
feature selection again for Planar and 2-
Planar, interacting with the possibility that
MaltOptimizer provides, stopping the pro-
cess between phases. For phase 3, when the
training corpora has non zero non-projective
arcs/trees we run Planar arc-eager with
pseudo-projective parsing, otherwise, we run
it with default settings.

Phase 2 Phase 3
Language Default Phase 1 Planar 2-Planar Planar 2-Planar
Arabic 63.02 63.03 62.81 63.42 65.53 64.94
Bulgarian 83.19 83.19 82.89 84.09 83.55 84.09
Chinese 84.14 84.14 81.66 82.79 83.63 83.54
Czech* 69.85 70.24 70.34 70.45 75.60 74.76
Danish 81.01 81.01 80.86 81.18 82.08 82.75
Dutch 74.77 74.77 76.55 76.81 76.55 81.41
German 82.36 82.36 81.34 82.28 84.64 84.84
Japanese 89.70 89.70 86.62 88.19 87.95 89.79
Portuguese 84.11 84.31 84.06 84.19 84.06 86.10
Slovene 66.08 66.52 65.94 66.43 69.72 70.13
Spanish 76.45 76.45 75.69 76.52 78.29 79.15
Swedish 83.34 83.34 82.38 82.83 83.67 83.78
Turkish 57.79 57.79 55.94 56.08 64.44 64.00

Table 1: Labeled attachment score per phase
and with comparison to default settings for
the training sets from the CoNLL-X shared
task (Buchholz and Marsi, 2006). *The re-
sults for Czech were obtained using half of
the training corpus due to a memory heap
issue.

We can note that the performance im-
proved substantially over all the selected cor-
pora. However, for some data sets we got a
much more substantial improvement, such as
Turkish or Slovene, than in the other corpora.

10The Multiplanar parsers are not selected as best
parsers for the corpora in which we carried out ex-
periments with MaltOptimizer, due to the action of
Stack non-projective and Stack projective parsing al-
gorithms, which provide normally the highest results.

11For 2-Planar, we force MaltOptimizer to select
between the 2-Planar options (-2pr and -prh) making
it believe that 2-Planar is the best parsing algorithm
for the data.

It is also worth noting that 2-Planar arc-
eager normally provides better results, both
in default settings (Phase 2) and in the op-
timized version (Phase 3), than Planar arc-
eager. However, in some cases this is not the
case, and the feature selection for Planar arc-
eager reaches a higher attachment score.

5. Conclusions and Future Work

In this paper we have demonstrated that
MaltOptimizer, which is an open-source sys-
tem, can be updated with new parsing algo-
rithms that are included (or will be) in Malt-
Parser. This fact demonstrates that it is a
very useful tool in order to get a reliable out-
come when a user wants to use MaltParser
for a new data set.

We have also demonstrated that the im-
provement is substantial, and we therefore
suggest using MaltOptimizer when Planar
and 2-Planar parsers are going to be used in
comparison between parsers, so as to obtain
reliable results.

As future work, we intend to add new fea-
ture selection algorithms, not only for Pla-
nar and 2-Planar parsers. Therefore, we are
thinking on new procedures that select the
best feature set possible and make them able
to beat the results shown in previous publica-
tions of MaltParser feature selection and the
present one. We could even consider a more
complex version of MaltOptimizer, in which
we run Phase 3 before Phase 2 for all the al-
gorithms, or a subset of them, and then we
could guarantee better results. However, for
big data sets, it will take a lot of time to run
several feature selection experiments.

Acknowledgments

MB has been funded by the Spanish Min-
istry of Education and Science (TIN2009-
14659-C03-01 Project).
CGR has been partially funded by the Span-
ish Ministry of Economy and Competitive-
ness and FEDER (project TIN2010-18552-
C03-02) and Xunta de Galicia (Rede Galega
de Recursos Lingǘısticos para unha So-
ciedade do Coñecemento).

References

Ballesteros, Miguel and Joakim Nivre.
2012a. MaltOptimizer: A System for
MaltParser Optimization. In Proceed-
ings of the Eighth International Confer-

ence on Language Resources and Evalua-
tion (LREC).

Ballesteros, Miguel and Joakim Nivre.
2012b. MaltOptimizer: An Optimiza-
tion Tool for MaltParser. In Proceedings
of the System Demonstration Session of
the Thirteenth Conference of the European
Chapter of the Association for Computa-
tional Linguistics (EACL).

Beuck, Niels, Arne Köhn, and Wolfgang
Menzel. 2011. Incremental parsing and
the evaluation of partial dependency anal-
yses. In Proceedings of the Int. Confer-
ence on Dependency Linguistics (Depling
2011).

Buchholz, Sabine and Erwin Marsi. 2006.
CoNLL-X shared task on multilingual de-
pendency parsing. In Proceedings of the
10th Conference on Computational Nat-
ural Language Learning (CoNLL), pages
149–164.

Chang, Chih-Chung and Chih-Jen Lin,
2001. LIBSVM: A Library for Support
Vector Machines. Software available at
http://www.csie.ntu.edu.tw/∼cjlin/libsvm.

Covington, Michael A. 2001. A fundamental
algorithm for dependency parsing. In Pro-
ceedings of the 39th Annual ACM South-
east Conference, pages 95–102.

Daelemans, Walter, Véronique Hoste, Fien
De Meulder, and Bart Naudts. 2003.
Combined optimization of feature selec-
tion and algorithm parameters in machine
learning of language. In Nada Lavrac,
Dragan Gamberger, Hendrik Blockeel,
and Ljupco Todorovski, editors, Machine
Learning: ECML 2003, volume 2837
of Lecture Notes in Computer Science.
Springer.

Fan, R.-E., K.-W. Chang, C.-J. Hsieh, X.-
R. Wang, and C.-J. Lin. 2008. LIBLIN-
EAR: A library for large linear classifica-
tion. Journal of Machine Learning Re-
search, 9:1871–1874.

Gómez-Rodŕıguez, Carlos and Daniel
Fernández-González. 2012a. Dependen-
cias no dirigidas para el análisis basado en
transiciones. Procesamiento del Lenguaje
Natural, 48:43–50.

Gómez-Rodŕıguez, Carlos and Daniel
Fernández-González. 2012b. Depen-
dency parsing with undirected graphs.

In Proceedings of the 13th Conference
of the European Chapter of the Asso-
ciation for Computational Linguistics
(EACL), pages 66–76, Avignon, France,
April. Association for Computational
Linguistics.

Gómez-Rodŕıguez, Carlos and Joakim Nivre.
2010. A transition-based parser for 2-
planar dependency structures. In Proceed-
ings of the 48th Annual Meeting of the
Association for Computational Linguistics
(ACL), pages 1492–1501.

Kool, Anne, Jakub Zavrel, and Walter Daele-
mans. 2000. Simultaneous feature se-
lection and parameter optimization for
memory-based natural language process-
ing. In A. Feelders, editor, BENELEARN
2000. Proceedings of the Tenth Belgian-
Dutch Conference on Machine Learning.
Tilburg University, Tilburg, pages 93–100.

Krivanek, Julia and Detmar Meurers. 2011.
Comparing rule-based and data-driven de-
pendency parsing of learner language. In
Proceedings of the Int. Conference on De-
pendency Linguistics (Depling 2011).

Nilsson, Peter and Pierre Nugues. 2010. Au-
tomatic discovery of feature sets for de-
pendency parsing. In COLING, pages
824–832.

Nivre, Joakim. 2003. An efficient al-
gorithm for projective dependency pars-
ing. In Proceedings of the 8th Interna-
tional Workshop on Parsing Technologies
(IWPT), pages 149–160.

Nivre, Joakim. 2008. Algorithms for deter-
ministic incremental dependency parsing.
Computational Linguistics, 34:513–553.

Nivre, Joakim. 2009. Non-projective de-
pendency parsing in expected linear time.
In Proceedings of the Joint Conference
of the 47th Annual Meeting of the ACL
and the 4th International Joint Confer-
ence on Natural Language Processing of
the AFNLP (ACL-IJCNLP), pages 351–
359.

Nivre, Joakim and Johan Hall. 2010. A quick
guide to MaltParser optimization. Tech-
nical report, maltparser.org.

Nivre, Joakim, Johan Hall, Sandra Kübler,
Ryan McDonald, Jens Nilsson, Sebastian
Riedel, and Deniz Yuret. 2007. The

CoNLL 2007 shared task on dependency
parsing. In Proceedings of the CoNLL
Shared Task of EMNLP-CoNLL 2007,
pages 915–932.

Nivre, Joakim, Johan Hall, and Jens Nilsson.
2006. Maltparser: A data-driven parser-
generator for dependency parsing. In Pro-
ceedings of the 5th International Confer-
ence on Language Resources and Evalua-
tion (LREC), pages 2216–2219.

Nivre, Joakim, Johan Hall, Jens Nilsson,
G. Eryiğit, and S. Marinov. 2006. La-
beled pseudo–projective dependency pars-
ing with support vector machines. In
CoNLL–X.

Nivre, Joakim, Marco Kuhlmann, and Jo-
han Hall. 2009. An improved oracle for
dependency parsing with online reorder-
ing. In Proceedings of the 11th Interna-
tional Conference on Parsing Technologies
(IWPT’09), pages 73–76.

Nivre, Joakim and Jens Nilsson. 2005.
Pseudo-projective dependency parsing. In
Proceedings of the 43rd Annual Meeting
of the Association for Computational Lin-
guistics (ACL), pages 99–106.

Ott, Niels and Ramon Ziai. 2010. Eval-
uating dependency parsing performance
on German learner language. In Pro-
ceedings of the Ninth International Work-
shop on Treebanks and Linguistic Theories
(TLT9), NEALT Proceeding Series.

Prudhvi Kosaraju, Sruthilaya Reddy Ke-
sidi, Vinay Bhargav Reddy Ainavolu and
Puneeth Kukkadapu. 2010. Experiments
on indian language dependency parsing.
In ICON-2010 Tools Contest on Indian
Language Dependency Parsing. Kharag-
pur, India.

Yli-Jyrä, Anssi Mikael. 2003. Multipla-
narity – a model for dependency struc-
tures in treebanks. In Joakim Nivre and
Erhard Hinrichs, editors, TLT 2003. Pro-
ceedings of the Second Workshop on Tree-
banks and Linguistic Theories, volume 9 of
Mathematical Modelling in Physics, En-
gineering and Cognitive Sciences, pages
189–200, Växjö, Sweden, 14-15 November.
Växjö University Press.

