
A Modifiable Agent-Based Software Architecture for
Intelligent Virtual Environments for Training

Gonzalo Méndez
Computer Science School

Technical University of Madrid
gonzalo@gordini.ls.fi.upm.es

Angélica de Antonio
Computer Science School

Technical University of Madrid
angelica@fi.upm.es

Abstract

During the last years, Intelligent Virtual Environments
for Training have become a quite popular application of
computer science to education. However, little attention is
being paid to software engineering issues, and most sys-
tems are developed in an ad-hoc way that does not allow
the reuse of their components or an easy modification of the
application, even though some authors claim that the use of
agents makes systems be more modifiable. We describe an
agent-based software architecture that is intended to be eas-
ily extended and modified. This architecture is a redesign of
a previous one using more formal principles and methods
of software architecture design.

1. Introduction

Intelligent Virtual Environments for Training (IVET) are
a combination of a 3D Virtual Environment (VE) and an
intelligent tutor, be it an Intelligent Tutoring System (ITS)
[11] or not. They are mainly used to train students in situa-
tions where training in the real environment may be danger-
ous, very expensive or difficult. Although still not widely
used, they are experiencing an increase of popularity for
military, industrial and medical training.

The development of IVETs has a quite short history,
dating from the mid-nineties. The youth of the field, to-
gether with the complexity and variety of the technologies
involved, have led to a situation in which neither the archi-
tectures nor the development processes have been standard-
ized yet. Therefore, almost every new system is developed
from scratch, in an ad-hoc way, with very specific solutions
and monolithic architectures, and in many cases forgetting
software engineering principles and techniques.

The MAEVIF project (Model for the Application of In-
telligent Virtual Environments to Education) was the result
of several experiences integrating VEs and intelligent tutors

[8, 9] that served to point out the problems that commonly
arise in such integrations. The objective of the MAEVIF
project was to define a model for the application of intelli-
gent virtual environments to education and training, which
involved the definition of an open and flexible agent-based
software architecture to support IVETs, the design and im-
plementation of a prototype authoring tool, based on the de-
fined architecture, that simplifies the development of IVETs
and the definition of a set of methodological recommenda-
tions for the development of IVETs.

In the remainder of this paper we describe the architec-
tural design (sections 2, 3 and 4) and the resulting architec-
ture (section 5). Then, we present some evaluation results
(section 6) and the current and future work lines (section 7).

2. Overview of the Architectural Design

The architecture described in this paper is the evolution
of a former one [4], based on an organizational approach,
that did not offer the expected modifiability. After its imple-
mentation and subsequent analysis of the resulting system,
it was decided to redesign it making use of not specifically
agent oriented techniques. The redesign aimed at obtaining
an easily modifiable architecture, that allowed us to substi-
tute virtually any agent by a different one with a low impact
on the other agents. An additional objective was for devel-
opers to be able to extend the system with as few modifica-
tions as possible.

The main theoretical support have been the methods de-
veloped at the Software Engineering Institute (SEI) [1, 2,
3], such as Attribute Driven Design (ADD), Architecture
Tradeoff Analysis Method (ATAM) and Views and Beyond
(V&B). The purpose of the first two methods is to design
and evaluate a software architecture driven by quality at-
tributes instead of only functionality, while the third one
helps to organize the documentation. The other important
support has been provided by the use of information hiding
[10], which establishes that a division in submodules must



be such that each submodule encapsulates a design deci-
sion that must remain hidden from the rest, and communi-
cation among submodules is carried out using an interface
as abstract as possible. The design decisions that are encap-
sulated in each module are related to the changes that are
likely to happen over the system’s life.

Although we planned to use ADD as the architectural
design method, we discarded it after a few design sessions
because of two reasons. The first reason is the fact that ADD
is based on a hierarchical system decomposition, and one
that does not allow elements to have more than one father.
One problem we had with the first architecture was the fact
that some agents were not clearly under the supervision of
another agent, so a hierarchical structure was not what we
wanted to obtain. The second reason has to do with the
complexity of decomposing a module in more than four or
five elements, which was likely to be the case with the ITS.

Agent systems are intrinsically peer-to-peer, where each
agent is a peer that makes use of services offered by other
agents. Therefore, this is the approach we have followed to
design the new architecture. Like ADD suggests, we have
started by selecting the architectural drivers for our appli-
cation. However, instead of following a decomposition ap-
proach, we have worked using an iterative an incremental
approach. A sketch of the architecture was always present
in a whiteboard in the architectural design sessions. Ev-
ery time a feature had to be added, or a change had to be
made, it was tested against the architectural drivers until a
way was found to satisfy them. At that moment, the change
was added to the architectural design.

3. Quality Attributes

The design process started with the definition of a set of
quality scenarios to establish the changes to be considered
by the design. These changes have to do with the ability
to substitute an agent with a different one that provides a
similar functionality, or to move some responsibility from
one agent to another. This is required because one of the
objectives of the system is to be used as a test-bed for teams
developing just some of the elements of the ITS (e.g. the
student modelling or the tutoring strategy). Another kind of
change is the possibility to turn off some functionality, such
as supervision, so that the student can use the system in an
exploratory way without the tutor interrupting him.

The system is also required to be easily extended, so
that new agents that provide new functionality can be added
without having to make big changes in the existing ones.

Taking into account that training is carried out in a VE,
modifiability requirements cannot be an obstacle for the
main objective of the system, which is to provide students
with a training environment as similar as possible to the real
one. Therefore, it is important to keep performance close to

real time. If not, the training experience may be frustrat-
ing for the student, which may cause the training to be less
effective than more traditional methods.

There is a usability attribute, adaptation to the user, that
has not been considered explicitly because it is already in-
cluded in the objectives of an ITS. The student modelling is
used to customize the training process to the student’s abili-
ties and needs, so it has not been necessary to consider it as
an additional quality attribute.

4. Design Decisions

With the described modifiability objectives in mind, the
approach we followed was to keep the agents as anonymous
as possible, so that no agent directly knows which agents
are providing the services they need. To achieve this, dur-
ing system startup, the agents announce in the system’s yel-
low pages the services they are capable to provide. Thus,
an agent does not know how many or what kind of agents
there are in the system; they just know that there is an agent
that can provide a service they need. This way, it is easier
to change the agent that provides a service, as long as the
service is provided in the same terms the original one was.
This requirement is similar to Liskov’s substitution princi-
ple in object oriented design [7].

Once the agent finds the service it is looking for, it can
act in two different ways. If the service involves frequent
updates, the agent subscribes to an update list, so that ev-
ery time an update arrives, it is immediately informed about
it. If, on the contrary, the agent only needs to request the
service at specific times, it annotates which agent it has to
request the service to. In both cases, the decision is made at
runtime, so changes in the design are easier to carry out.

Agents communicate with each other exchanging FIPA
ACL messages. We have designed a fairly simple commu-
nication protocol for an agent to request a service from an-
other agent. Agent A sends a request to agent B, who ac-
knowledges the reception of the request. Then agent B car-
ries out the required actions and sends agent A the result of
the execution of the service (or a message with the reasons
why it could not be carried out). Agent A acknowledges the
reception of the result and the communication stops until
another service request is required.

A communication centre has been designed to commu-
nicate the agent platform and the VE. Each application sub-
scribes to the messages it is interested in receiving, so that
they only receive the messages they know how to handle,
no matter who sends them.

We have also made use of configuration files to set up
the training session. Thus, the description of the procedures
to be trained, the composition of the scenarios, the objec-
tives of the activity, its participants or the parametrization of
the tutoring strategy are all read from several configuration



Figure 1. Peer-to-peer view.

files, which allows changes in the way the system behaves
without further changes in the design.

5. Agent-Based Architecture

The resulting architecture is the one shown in Fig. 1. The
picture shows the structure of the architecture as it is cur-
rently designed, where all the agents are represented along
with the communication channels.

During runtime, there is only one agent of each kind,
except for the agents that are related to students: the Stu-
dent Modelling Agent and the Communication Agent. This
way the system can handle the communication with them in
parallel. In addition, if the agent platform needs to be dis-
tributed in different machines, the distribution can be made
in terms of the number of students.

The main features of the architecture are:

• There is no hierarchical structure; it has been consid-
ered preferable to use a peer-to-peer style.

• It uses a publish-subscribe style to offer a service ori-
ented behaviour. Agents advertise their services in the
yellow pages and other agents can subscribe to the ser-
vices they are interested in. Although we were not aim-
ing at obtaining a Service Oriented Architecture, this is
one of the mechanisms that introduces a higher degree
of modifiability in the system.

• Extended support for a simulator. Some systems simu-
late environmental events that may be caused by exter-
nal factors, such as changes in the state of a patient.
Events are directly simulated in the VE, but it may
also be desirable to use an external simulator in cases
where it has already been implemented or when it has a
complex behaviour. The simulation agent can simulate

simple systems, receive information from a simulation
running together with the VE or act as a wrapper of an
external simulation.

• The tutoring strategy can be adjusted by changing the
parameters that are read from a configuration file dur-
ing the initialization of the system. These parameters
are expected to change dynamically with the new de-
sign of the student modelling agent.

• The world agent is responsible for maintaining an on-
tology that stores the state of the VE. A simple reason-
ing engine has been added so that the world agent is
able to provide richer answers to the student.

• A message centre is now used to communicate the dif-
ferent subsystems that form the training system. Each
subsystem registers in the message centre and requests
the kind of information it is interested in.

6. Evaluation

We are currently evaluating the suitability of the archi-
tecture to our needs both at architectural and runtime levels.

At the architectural level, the evaluation requires the use
of quality scenarios to identify relevant quality attributes.
We are gathering a thorough collection of scenarios that
gives us a better understanding of the implications of the
design decisions we have made. In order to do it, we have
run an ATAM session and we are planing to run another one
in the context of a 3-year research project, ENVIRA, that
has already started in conjunction with two other research
groups that will be using the multi-agent system to develop
their own training systems.

In the first session, the participants were the members of
the development team, and we only made use of some steps
of Phase 0 and of Phase 2 of ATAM, since all of them were
familiar with the architecture. The main objectives of this
session were to identify and evaluate use case scenarios and
growth scenarios.

Given the composition of the group that took part in the
evaluation, no significant results were obtained in terms of
use case scenarios. As for the growth scenarios, we have
identified sensitivity points that we will have to cope with in
the ENVIRA project. They have to do with the addition of a
new student modelling scheme and a cognitive architecture
for virtual characters controlled by agents.

A second ATAM session has been scheduled where
members of the other two research teams will also take part.
In this session, we expect to get more results about growth
scenarios related to their assignments in the project and a
few exploratory scenarios.

To test the system at runtime level, we are developing
it in an iterative way. Each agent is being developed apart



from the rest, and the agents they need to communicate with
have been substituted by ’dummy’ agents. At the end of
each iteration, the dummy agents are removed and substi-
tuted by the agents that are under development. This way,
the development keeps focused on three aspects: adherence
to the designed communication protocols; change of one
agent by a different one, even if it is as simple as the dummy
agents are; turning some functionalities on and off, with the
aid of the dummy agents.

There is already a pilot application that offers much of
the functionality that the previous version provided. For the
moment, the student modelling is quite simple, as well as
the simulation agent. In contrast, the tutoring agent is capa-
ble of supervising the student, providing different levels of
hints and answers to the student’s questions. The planning
agent is already able to plan a procedure and replan alterna-
tives, and the world an expert agents provide support to the
tutoring agent. Both the agent platform and the VE show
a good performance when running at the same time in the
same or different machines, either with one or two students.
Further testing is still needed to add more students.

7. Conclusions and Ongoing Work

It is getting common for Virtual Environments for Train-
ing to be designed as Multi-Agent Systems, since agents
provide a higher level of abstraction than objects and this
helps to face the increasing complexity that involves the de-
velopment of IVETs.

Many authors claim that their systems are flexible be-
cause they are using agents to build them. On the contrary,
the result may be worse than without agents if the design de-
cisions have not been made with care. We have tried to take
advantage of the growing experience in the field of software
architecture both to design and evaluate our architecture, al-
though we have not been able to use ADD for the architec-
tural design, given the fact that a hierarchical decomposition
does not seem to suit our needs. A review of the new version
of ADD [12] shows it is based on the same design strategy,
so we still need a different design approach that is not based
on hierarchical structure and decomposition. Even so, de-
signing with quality attributes as architectural drivers has
resulted in a design that has proven to be more modifiable
than the previous one. As for the use of ATAM, it is a valu-
able tool from which we still expect to obtain useful results.

We are already making changes to the system to test to
what extent it can be modified, and they are being evaluated
both on the architectural design and on the implemented
system. In addition to the modification of the student mod-
elling agent, there are two main changes that will prove the
suitability of the architecture. The first one is the inclusion
of a model of human-like perception [5] to use the student’s
attention as part of the student’s model. The second one

is the inclusion of a cognitive architecture that allows us
to make use of virtual tutors and teammates with complex,
emotional behaviours [6].

Acknowledgements

This research has been funded by the Spanish Ministry of
Science through projects MAEVIF (TIC2000-1346), ICE-
VAPI (TIN2004-07946) and ENVIRA (TIN2006-15202-
C03-01) and has been supported by the INTUITION NoE.

References

[1] L. Bass, P. Clements, and R. Kazman. Software Architecture
in Practice. SEI Series in Software Engineering. Addison
Wesley Professional, 2nd edition, 2003.

[2] P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers,
R. Little, R. Nord, and J. Stafford. Documenting Software
Architectures: Views and Beyond. SEI Series in Software
Engineering. Addison Wesley Professional, 2002.

[3] P. Clements, R. Kazman, and M. Klein. Evaluating Software
Architectures. SEI Series in Software Engineering. Addison
Wesley Professional, 2002.

[4] A. de Antonio, J. Ramirez, and G. Mendez. An Agent-Based
Architecture for Virtual Environments for Training, chapter
VIII, pages 212–233. Idea Group, 2005.

[5] P. Herrero and A. de Antonio. Keeping watch: Intelligent
virtual agents reflecting human-like perception in coopera-
tive information systems. In Proc. of the 11th Intl. Conf. on
Cooperative Information Systems. Springer-Verlag, 2003.

[6] R. Imbert and A. de Antonio. Using progressive adaptability
against the complexity of modeling emotionally influenced
virtual agents. In Proc. of the 18th Intl. Conf. on Computer
Animation and Social Agents (CASA 2005), 2005.

[7] B. Liskov and J. Wing. Family values: A behavioral notion
of subtyping. Technical Report MIT/LCS/TR-562b, MIT,
Cambridge, MA, USA, 1993.

[8] G. Mendez, P. Herrero, and A. de Antonio. Intelligent vir-
tual environments for training in nuclear power plants. In
Proc. of the 6th Intl. Conf. on Enterprise Information Sys-
tems (ICEIS 2004), Porto, Portugal, April 2004.

[9] G. Mendez, J. Rickel, and A. de Antonio. Steve meets jack:
the integration of an intelligent tutor and a virtual environ-
ment with planning capabilities. In 4th Intl. Working Conf.
on Intelligent Virtual Agents (IVA03), volume 2792 of LNAI,
pages 325–332. Springer-Verlag, September 2003.

[10] D. L. Parnas. On the criteria to be used in decompos-
ing systems into modules. Communications of the ACM,
15(12):1053 – 1058, December 1972.

[11] E. Wenger. Artificial Intelligence and Tutoring Systems.
Computational and Cognitive Approaches to the Communi-
cation of Knowledge. Morgan Kaufmann Publishers, Los
Altos, California, 1987.

[12] R. Wojcik, F. Bachmann, L. Bass, P. Clements, P. Mer-
son, R. Nord, and B. Wood. Attribute-driven design (add),
version 2.0. Technical Report CMU/SEI-2006-TR-023,
CMU/SEI, 2006.


