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AN AGENT-BASED ARCHITECTURE FOR VIRTUAL ENVIRONMENTS 

FOR TRAINING 

 

ABSTRACT 

This chapter proposes an architecture for the development of Intelligent Virtual 

Environments for Training (IVETs), which is based on a collection of co-operative 

software agents. The first level of the architecture is defined as an extension of the 

classical Intelligent Tutoring System architecture that adds a new World Module. 

Several software agents are then identified within each module. They communicate 

among them directly via messages and indirectly via a common data structure which is 

used for the collaborative development of plans. Some details are provided about the 

most remarkable interactions that will be established among agents during the system’s 

execution. The proposed architecture, and its realization in a platform of generic and 

configurable agents, will facilitate the design and implementation of new IVETs, 

maximizing the reuse of existing components and the extensibility of the system to add 

new functionalities. 
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INTRODUCTION 

Computer-Based Training is a promising application area of three dimensional virtual 

environments(VEs). These environments allow the students to navigate through and 

interact with a virtual representation of a real environment in which they have to learn 

to carry out a certain task. They are especially useful in situations where the real 



environment is not available for training, or it is very costly or risky. A good example is 

training of nuclear power plant operators. A multi-user virtual environment also allows 

for the training of teams. An Intelligent Virtual Environment for Training (IVET) 

results from the combination of a Virtual Environment and an Intelligent Tutoring 

System (ITS). IVETs are able to supervise the actions of the students and provide 

tutoring feedback. The Intelligent Tutoring component of an IVET usually adopts a 

virtual representation (a Pedagogical Virtual Agent) that inhabits the environment 

together with the virtual representations of the students (avatars).  

The development of three dimensional Virtual Environments has a quite short history, 

dating from the beginning of the 90s. The youth of the field, together with the 

complexity and variety of the technologies involved, have led to a situation in which 

neither the software architectures nor the development processes have been standardized 

yet. Therefore, almost every new system is developed from scratch, in an ad-hoc way, 

with very particular solutions and monolithic architectures, and in many cases forgetting 

the principles and techniques of the Software Engineering discipline (Munro et ál, 

1999). Some of the proposed architectures deal only partially with the problem, since 

they are centered on a specific aspect like the visualization of the VE (Alpdemir and 

Zobel, 1998) (Demyunck et ál., 1999) or the interaction devices and hardware (Darken 

et ál, 1995). 

As a result, current VEs lack many of the desirable quality attributes of any software 

system, such as flexibility, reusability, maintainability or interoperability. 

The size and complexity of VEs will continue to increase in the future, making this 

situation even worse. Many researchers and developers of VEs are starting to recognize 

the need of a Software Engineering approach to the development of VEs (Brown et ál., 

1999) (Fencott, 1999) (Sánchez, 2001). 



In particular, there is a need to define “standard” architectures in order to facilitate the 

development of individual components by different teams or organizations which may 

have different skills and knowledge. The development of a new VE will then consist of 

the selection and adaptation of existing components, and their assembly and integration. 

In this way, components will be reusable, the system will be flexible to be extended 

with new components, and the interfaces among components will be clearly defined to 

facilitate interoperability of possible very heterogeneous components. 

Unfortunately, we are still very far from this ideal state. Given the broad variety and 

diversity of VEs and their applications, and taking into account that they may require 

different architectures, we have decided to restrict the scope of our research to a certain 

type of VEs, namely Virtual Environments for Training (VETs). 

The goal of this kind of VEs is to train one or more students in the execution of a certain 

task. They are especially useful in those situations in which training in the real 

environment is either impossible or undesirable because it is costly or dangerous. Lets 

consider as an example training the operators of a nuclear power plant in the execution 

of maintenance interventions. In the real environment the trainees would be subject to 

radiation, which is of course unacceptable for their health, and additionally it would be 

impossible to reproduce some maintenance interventions without interfering with the 

normal operation of the plant. 

In VETs, the supervision of the learning process can be performed by human tutors or it 

can be performed by intelligent software tutors, also known as pedagogical agents (in 

this case we will call it an IVET). Those pedagogical agents, in turn, can be embodied 

and inhabit the virtual environment together with the students or they can be just a piece 

of software that interacts with the student via voice, text or a graphical user interface. 

Some pedagogical agents have been developed to date, in some cases with quite 



advanced tutoring capabilities. One of the best known is STEVE, developed in the 

Center for Advanced Research in Technology for Education (CARTE) of the Intelligent 

Systems Division of the University of Southern California (USC) (Rickel and Johnson, 

1999) (Rickel and Johnson, 2000). 

Recently, we conducted an experiment (Méndez et ál., 2003) in reusing an intelligent 

animated agent, namely Steve, in a new virtual world, HeSPI, which was developed 

independently. Steve was carefully designed to be easy to be applied to new domains 

and virtual worlds. It was originally applied to equipment operation and maintenance 

training on board a virtual ship. Subsequently, it was significantly extended and applied 

to leadership training in virtual Bosnia. However, the leadership training application 

was designed with Steve in mind. In contrast, HeSPI (de Antonio et ál., 2003) was 

developed independently as a tool for planning maintenance interventions in nuclear 

power plants. HeSPI’s Virtual avatars were developed using Jack, a human simulation 

tool distributed by EDS. HeSPI’s design was also carefully thought so that different 

user interfaces could be easily connected to the system. Two user interfaces were 

developed, one of them using voice recognition and conventional mouse, keyboard and 

monitor, and another one using a 3D mouse and shutter glasses. Thus, HeSPI+Steve 

looked like a good test bed for evaluating the degree in which nowadays VEs and 

pedagogical agents can be easily ported and made them interoperate. 

All through the integration, we encountered several problems. For example, there were 

undesired behaviors due to the fact that both Steve and HeSPI performed redundant 

actions. There were control and synchronization problems. Steve required some 

information that HeSPI could not provide and vice versa, etc. Many of these difficulties 

stemmed from the fact that their underlying architectures and their external interfaces 

were not totally compatible. Our conclusion from this experiment was that there is 



effectively a need for standard architectures designed to facilitate reusability, 

extensibility and interoperability among components. 

Component-based standard architectures in the field of educational software are not 

new. In the last years we witnessed the activity of several standardization organizations 

all around the world, like the IEEE Learning Technology Standards Committee (LTSC) 

(http://www.ltsc.ieee.org), which proposed the Learning Objects Meta-data 

Specification (LOM); the IMS Global Learning Consortium Inc. 

(http://www.imsglobal.org), creators of the Learning Resource Meta-data Information 

Model; ARIADNE (Alliance of Remote Instructional Authoring and Distribution 

Networks for Europe (http://www. ariadne-eu.org); or the AICC (Aviation Industry 

Computer Based Training Committee, http://www.aicc.org), authors of the Computer 

Managed Instruction (CMI) Specifications, Course Structure Format, and CMI Data 

Model. These standards and specifications were further integrated by the ADL 

(Advance Distributed Learning) co-Laboratory, created by an US initiative, to give birth 

to SCORM (Sharable Content Object Reference Model, http://www.adlnet.org), which 

is increasingly being recognized as an international standard for e-learning applications. 

However, these standards have never taken into account the special characteristics and 

needs of educational software based on VEs. They are oriented towards web-based e-

learning courses in which the interactivity with the student is restricted to navigating 

through the materials (web pages) and answering tests. 

The work that we present in this paper is a first step towards the goal of defining 

standard architectures for IVETs. 

AN ARCHITECTURE FOR VETS BASED ON THE ARCHITECTURE OF 

INTELLIGENT TUTORING SYSTEMS 



Our approach to the definition of an architecture for VETs is based on the agent 

paradigm, as opposed to the SCORM and other standards approach which is based on 

the object oriented paradigm. The rationale behind this choice is our belief that the 

design of highly interactive VETs populated by intelligent and autonomous or semi-

autonomous entities, in addition to one or more avatars controlled by users, requires 

higher level software abstractions. Objects and components (CORBA or COM-like 

components) are passive software entities which are not able to exhibit the kind of pro-

activity and reactivity that is required in highly interactive environments. Agents, 

moreover, are less dependent on other components than objects. An agent that provides 

a given service can be replaced by any other agent providing the same service, or they 

can even co-exist, without having to recompile or even to reinitiate the system. New 

agents can be added dynamically providing new functionalities. Extensibility is one of 

the most powerful features of agent technology. The way in which agents are designed 

make them also easier to be reused than objects.  

Our work draws from the results obtained in the MAPI project (“Modelo Basado en 

Agentes Cooperativos para Sistemas Inteligentes de Tutoría con Planificación 

Instructiva”, funded by CICYT from 1996 to 1999) and is currently being funded by the 

Spanish Ministry of Science and Technology through project MAEVIF (TIC00-1346). 

In MAPI we designed an architecture based on co-operative agents for the tutoring 

component of Intelligent Tutoring Systems (ITSs) in which communication among 

agents took place through a shared blackboard structure. Starting from the idea that a 

VET can be seen as an ITS (an IVET, Intelligent Virtual Environment for Training), and 

the pedagogical agent in an IVET can be seen as an embodiment of the tutoring module 

of an ITS, our first approach towards extending the MAPI architecture for IVETs was to 



define an agent for each of the four modules of the generic architecture of an ITS (see 

figure 1). 

Student M. Expert M.

Tutoring M. 

Communication M.

Student
 

Figure 1. Architecture of an ITS 

The ITS architecture, however, does not fit well with the requirements of IVETs in 

several aspects: 

• IVETs are usually populated by more than one student, and they are frequently 

used for the training of teams. An ITS is intended to adapt the teaching and learning 

process to the needs of every individual student, but they interact with the system one at 

a time. However, in a multi-student IVET the systems would have to adapt both to the 

characteristics of each individual student and to the characteristics of the team. 

• The student module should model the knowledge of each individual student but 

also the collective knowledge of the team. 

• The student is not really out of the limits of the ITS, but immersed in it. The 

student interacts with the IVET by manipulating an avatar within the IVET, possibly 

using very complex virtual reality devices such as HMD (head mounted displays), data 

gloves or motion tracking systems. Furthermore, each student has a different view of the 

VE depending on their location within it. 



• The communication module in an ITS is usually realized by means of a GUI or a 

natural language interface that allows the student to communicate with the system. It 

would be quite intuitive to consider that the 3-D graphics model is the communication 

module of an IVET. However there is a fundamental difference among them. In an 

IVET some of the learning goals may be directly related to the manipulation and 

interaction with the 3D environment, while the communication module of a classical 

ITS is just a means, not an end. For instance, a nuclear power plant operator in an IVET 

may have to learn that in order to open a valve he has to walk to the control panel, 

which is located on the control room, and press a certain button. Therefore, the ITS 

needs to have explicit knowledge about the 3D VE, its state, and the possibilities of 

interaction with it. 

As a first step we decided to modify and extend the ITS architecture by considering 

some additional modules (see figure 2). 

First of all, we split the communication module into a set of different views for all the 

students, plus a particular communication thread for each student and a centralized 

communication module to integrate the different communication threads. Then we 

added a World Module, which contains geometrical and semantical information about 

the 3D graphical representation of the VE and its inhabitants, as well as information 

about the interaction possibilities. The tutoring module is unique to be able to make 

decisions that affect all the students as well as tutoring decisions specific for a certain 

student. The expert module will contain all the necessary data and inference rules to 

maintain a simulation of the behavior of the system that is represented through the VE 

(for example the behavior of a nuclear power plant). The student module, finally, will 

contain an individual model for each student as well as a model of the team. 
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Figure 2. Extended ITS architecture for IVETs 

AN AGENT-BASED ARCHITECTURE FOR IVETS 

Taking the extended architecture of the previous section as a reference, the next step 

was to decide which software agents would be necessary to transform this component-

oriented architecture into an agent-oriented architecture. In an agent-oriented 

architecture, each agent is capable of performing a certain set of tasks, and is capable of 

communicating with other agents to co-operate with them in the execution of those 

tasks. 



Our agent-based architecture has five principal agents corresponding to the five key 

modules of the extended ITS architecture: 

- A Communication Agent 

- A Student Modeling Agent 

- A World Agent 

- An Expert Agent 

- A Tutoring Agent 

Each of these principal agents may relate to, communicate with and delegate some tasks 

to other subordinate agents, giving rise to multi-level agent architecture. 

In this way, the Communication Agent will delegate on a set of Individual 

Communication Agents dedicated to each student. The students can choose among 

several interface devices for the interaction with the environment, ranging from the 

simple monitor+mouse+keyboard combination to the most complex and immersive 

virtual reality combination: head mounted display + motion tracking + data glove + 

voice recognition. There is a set of Device Agents to manage the different devices that 

can be used to interact with the environment and make the system independent of any 

specific combination of interaction devices. There is also a Connection Manager Agent 

which is responsible of coordinating the connections of the students.  

The Student Modeling Agent is assisted by: 

- A Historic Agent, which is responsible of registering the history of interactions 

among the students and the system. 

- A Psychological Agent, which is responsible of building a psychological profile 

of each student including their learning style, attentiveness, and other personality traits, 

moods and emotions that may be interesting for adapting the teaching process. 



- A Knowledge Modeling Agent, which is responsible of building a model of the 

student’s current knowledge and its evolution. 

- A Cognitive Diagnostic Agent, which is responsible of trying to determine the 

causes of the student’s mistakes. 

The World Agent is related to: 

- The Objects and Inhabitants Information Agent, which has geometrical and 

semantical knowledge about the objects and the inhabitants of the world. This agent, for 

instance, will be able to answer questions about the location of the objects or their 

utility. 

- The Interaction Agent, which has knowledge about the possible interactions with 

the environment and the effects of those interactions. For instance, it will be able to 

answer questions like “What will it happen if I push this button?” 

- The Path Planning Agent, which is capable of finding paths to move along the 

environment without colliding with objects or walls.  

The Expert Agent, in turn, is related to other agents that are specialists in solving 

problems related to the subject matter that is being taught to the students. This is one of 

most variable components in an IVET. Underlying the virtual environment, one or more 

Simulation Agents are in charge of simulating the behaviour of the system that is 

represented through the Virtual Environment (VE) (for example the behaviour of the 

nuclear power plant). In many IVETs the goal of the system is to train students in the 

execution of procedures. In our prototype for nuclear power plants, for instance, the 

goal is to teach a team of operators to execute some maintenance procedures. In this 

case, the Expert Agent should be able to find the best procedure to solve a given 

malfunctioning situation, and this is achieved by a Planning Agent that is able to apply 

intelligent planning techniques like STRIPS. If the IVET was to be used for teaching 



Chemistry, for instance, the Expert Agent should have knowledge about the chemical 

elements and should be able to plan and simulate reactions.  

The Tutoring Agent, finally, will be assisted by: 

- A Curriculum Agent, which has knowledge of the curricular structure of the 

subject matter. 

- Several Tutoring Strategy Agents, which implement different tutoring strategies. 

Figure 3 shows how the extended ITS architecture is transformed from a modular point 

of view to an agent-based architecture. 
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Figure 3. Agent-based architecture for IVETs 

In the next sections we are going to discuss in more detail some of the more important 

aspects and functionalities that have to be considered in the design of an IVET, and how 

we have dealt with them in our agent-based architecture. Throughout these sections 

more details will be provided about the role played by some of the agents and the 

interactions that will be established among different agents. 

MANAGEMENT OF MULTIPLE VIEWS 



The fact that multiple users will be simultaneously connected to the system poses 

interesting challenges to the system architecture. As we mentioned before, each student 

will be provided with a particular view of the VE. We assume that each student will be 

represented in the environment by a graphical avatar, and his/her point of view will be 

located on the avatar’s eyes. The interaction of the student with the environment will be 

performed mainly with his/her hands (pushing buttons, picking up objects, etc.). In our 

prototypes we have decided that one student will only see the hand/s of his/her avatar, 

while he/she will see the full body of the other students’ avatars.  

In order to build and update a given 3D Graphical Environment View, we need several 

essential pieces of information: 

- The position and orientation of the student within the VE 

- The direction of the student’s gaze 

- The position and gesture of the student’s hand/s 

- The position of other students 

- The actions performed by other students 

One possibility for dealing with these information requirements in the system 

architecture is to have a centralized component that collects this information from every 

student, builds a common representation of the environment and then sends to each 

student’s view the updates. This task could be performed by the Central Communication 

Agent in the architecture of figure 3. The problem is that the centralized component 

becomes a bottleneck and has to deal with synchronization and consistency problems. 

Other possibility is to have all the student’s views communicate directly among them. 

Whenever an important event occurs in one of the views, the important information is 

broadcasted to the other views. This option is illustrated by the link among the 3D 



Graphical Environment Views in figure 2 and 3, and it is the one that we have chosen to 

optimize the performance of the system.  

INDIVIDUALITY VERSUS COLLECTIVENESS 

Having multiple simultaneous users raises a new question that needs to be addressed in 

the design of an IVET: the degree of individuality versus collectiveness that will be 

allowed in the tutoring component. In the most general case we can find a system that 

can be used both and simultaneously by individual students and by teams. In our 

prototype for nuclear power plant operators, for instance, there must be a first phase in 

the training in which each individual student uses the system to acquire or confirm 

general knowledge about radiation and radioprotection. Then, several activities can be 

posed that require the intervention of a team of operators. Two issues have to be taken 

into account in this kind of situation: 

• First, how to coordinate the different students that conform a team, so that one 

team activity can be initiated. Different students may be located on different places, 

they may connect to the IVET at different times, and their learning process may be on 

different stages. On the other hand, different students may have different profiles and 

learning goals. For instance, one operator may be learning to operate a crane while other 

operator may be learning to measure radiation. 

• Second, how the tutoring component is going to supervise the activity of 

individual students and teams. Are all of them going to share a tutor or is it going to be 

only one tutor for all the students? And what is the effect of this decision on the 

architecture of the system? 

In order to solve the first question, the Curriculum Agent must know, for each collective 

activity, the number of students involved and the role to be performed by each of them. 

In turn, the Knowledge Modeling Agent must have knowledge about the learning 



profiles or roles of each student. Then, when a new student tries to connect to the IVET, 

the Connection Manager Agent asks for the name or identification of the student and 

informs the Tutoring Agent. If the Tutoring Agent decides that some students are ready 

to learn a certain activity, it asks the Curriculum Agent for the number and roles of the 

participants involved in the activity. Each student must choose one participant with one 

of his/her roles. . Then we can have two possibilities:  

- to wait for the required number of students with the proper roles to be connected 

to the system, 

- to substitute any missing student with an Student Role Agent that has been 

programmed to be able to play that role. 

In the first case, the Connection Manager Agent is endowed with the goal of registering 

newly connected students for the pending activity, after checking with the Tutoring 

Agent if they are ready to learn that activity, and informing the Tutoring Agent as soon 

as the required number of students with the proper roles is connected. 

This solution has the disadvantage of having to adapt the learning speed of one student 

to the others’, but the advantage of promoting real team learning and social exchange 

among the students. 

The second option may be advisable if the learning speed of the students is very 

different or if there is a role in one activity for which there is not any student enrolled in 

the course. 

Regarding the issue of having only one or many tutors, we believe that having many 

embodied tutors moving around the environment, one for each student, may be very 

disturbing. On the other hand, each student should receive individualized advice. 

Having only one embodied tutor that has to supervise and talk to many students may 

imply that the tutor is all the time running from one student to another. We have chosen 



an intermediate solution. Since each student has a particularized view of the system, it is 

possible to show something only in one student’s view but not in the others’. Then, each 

student will only see one tutor that is dedicated to him/her. The tutor will follow the 

student along the VE, it will observe the student’s actions and it will talk to him. For 

one student it will look as if the other students were not being supervised. 

PROBLEM SOLVING WITHIN THE ENVIRONMENT 

The main kind of learning activity in an IVET consists of the tutoring agent describing 

an initial state of the system to the team of learners and asking them to find a way to 

reach a desired goal. For instance, the tutoring agent may ask the team to stop the 

reactor, or to change a contaminated filter. Solving the problem will require each of the 

team members to execute a certain set of actions in an appropriate order. For instance, 

changing the filter requires a cleaning operator to enter the controlled area and clean the 

surroundings, a radioprotection operator to measure the radiation level close to the filter 

at certain points during the change procedure, a couple of mechanical operators to 

disassemble the filter cartridge and extract the filter, and so on. 

A straightforward solution for the Expert Agent is to have a predefined plan or sequence 

of actions for each possible problem. The Tutoring Agent will then have to check 

whether the students’ actions adjust to the plan or not. However, this solution restricts 

the number of possible problems that the tutoring agent can pose to the student to the 

ones that have predefined solution plans. A more critical drawback of this solution is 

that many times different plans may be valid to reach the desired goal (even if they are 

not equally optimum in terms of time spent or radiation exposure, for instance). 

Whenever a student executes an action that was not in the predefined solution plan, the 

system should be able to determine whether it is possible to reach the desired goal from 

the resulting state or not. The kind of tutoring action to be taken greatly depends on this. 



The only way to make the system flexible enough to deal with a possibly unlimited 

number of problems and with unpredicted student actions is to provide the Expert Agent 

with the capability of finding the solution for any problem in real time. The expert in 

solving planning problems will be the Planning Agent (a planning problem can be 

defined as finding an optimal sequence of actions to reach a desired goal state from a 

given initial state). 

Initially, the Tutoring Agent is interested in finding out a plan to reach a certain final 

state in the VE from the current state. The plan consists of a sequence of actions that the 

student can perform in the VE. Three kinds of agents will be involved in the planning 

process: the Tutoring Agent, the Planning Agent and what we call Action Agents. Each 

Action Agent is specialized in a certain set of goals, so that it knows one or more 

actions that can satisfy each one of goals belonging to this set. As a working hypothesis, 

we assume there is not more than one Action Agent that can satisfy a goal (hypothesis 

1). In our system, we have three Action Agents: the Simulation Agent, the Path-

Planning Agent and the Interaction Agent. The interaction among these agents will be 

carried out by means of a shared blackboard and asynchronous message passing. During 

the planning process, the Planning Agent will coordinate Action Agents.  

The Path-Planning Agent can determine whether the avatar that models the student in 

the VE can walk from a position of the VE to another position of the VE. Hence, this 

agent will be in charge of satisfying goals of the type Is_In_Position(X, Y), and for that 

it will use the action Move_To((Xi, Yi), (Xf, Yf)). Although the VE is a 3D virtual world, 

the displacements of the avatar will always be done over a floor or plane. For that 

reason, we will only use two coordinates to specify the position of the avatar. Besides, 

as we assume it is always possible to move the mannequin from a position to any one in 

the VE, the preconditions of the operator Move_To((Xi, Yi), (Xf, Yf)) is true. 



In addition, the actions of the Interaction Agent are the basic actions that the avatar can 

do in the VE except for moving from a position to another one, for instance, press a 

button, pick up an object, insert a card in a card reader, etc. In order to make 

hierarchical planning possible, some basic actions can be grouped into tasks or higher-

level actions. The Simulation Agent will use the latter type of actions. Lets see an 

example to clarify the difference between basic actions and tasks. We suppose it is 

necessary to raise the temperature of a reactor in a nuclear power plant, and to carry out 

that, an operator must go to the control room and press a certain button. We consider 

raise the temperature of the reactor to be a task, and go to the control room and press 

button X to be basic actions. 

The planning process is inspired in the STRIPS algorithm (Fikes and Nilsson, 1971). 

However, our planner accomplishes a breadth search in the state space instead of a 

depth search; the reason of this is that we are not interested in obtaining any plan, but 

the best plan. To implement the breadth search, the planning process will maintain a 

search tree in which each node will include a stack of goals and actions in STRIPS 

style, a state, and the plan to reach this state (see figure 4). In some domains, the 

computational cost of building such a search tree may be too high; therefore we will 

work with domains in which the size of the state space is manageable. In order to allow 

the agents to do concurrent operations over the search tree, the tree is encapsulated in a 

blackboard.  

The planning process will begin when the Tutoring Agent introduces in the blackboard 

an empty parent node, and a child node for each different order of the goals that 

describe the desired final state and are not in the initial state. In addition, each child 

node will contain the description of the initial state and an empty plan. Then, the 

Tutoring Agent asks the Planning Agent to begin the planning process. Next, the 



Planning Agent notifies the Action Agents that there are new goals in the blackboard 

(the tops of the stacks in the leaf nodes of the tree). We call these goals active goals. 

Now, the Action Agents read all the active goals, and check whether they can satisfy 

any of them by using one of the actions that they know. It is noteworthy to mention that 

these read operations can be executed concurrently. If an Action Agent can satisfy an 

active goal by means of an action, this agent will carry out the following steps: 

1. Add child nodes to the node that comprises the active goal; a different child 

node will be created for each possible different order of the preconditions of the 

action. If any child node is already present in the search tree, it must not be 

added to the tree. 

2. For each child node: 

2.1. The ground action, the ground conjunction of the action preconditions and a 

different order of the ground preconditions are pushed in its stack. 

2.2. Check whether the goal in the top of the stack holds in the state included in 

the node. If it does, the goal is deleted, and the step 2 is repeated if the top 

of the stack is a goal. Otherwise, if the goal does not hold, the step 3 is 

executed. 

2.3. If the top of the stack is a conjunction, check whether the conjunction holds 

in the state included in the node. If it does, the conjunction is deleted. 

Otherwise, a fail node notification is sent to the Planning Agent, and this 

operation ends. 

2.4. If the top of the stack is a ground action, the action is removed from the 

stack, it is introduced in the plan of the node, and it is applied to the state of 

the node; next, go to step 2.2. 

3. Notify this operation to the Planning Agent (satisfied goal notification). 



In the step 2.4 we must distinguish a particular case related to the action Move_To((Xi, 

Yi), (Xf, Yf)). This action will be not completely ground in the stack, but only the latter 

two arguments will be constants. This is due to the fact that this action is used to satisfy 

a goal with the scheme Is_In_Position(A, B), so Xf/A and Yf/B. In order to bind the free 

variables of the action before introducing it in the plan, the plan will be examined to 

find the last bound action Move_To included in the plan. From this bound action, the 

latter two arguments (constants) will be extracted, and they will be used to bind the free 

variables. Otherwise, that is, if there is not a bound action Move_To in the plan, the 

initial position of the avatar will be used to bind the free variables.  

It is remarkable, thanks to the hypothesis 1, several agents may execute these steps over 

the blackboard concurrently because different leaf nodes are involved. On the other 

hand, if a Action Agent cannot satisfy a certain active goal, the agent will report it to the 

Planning Agent. In this way, the Planning Agent will be able to find out about whether 

there is a node in the tree whose active goal cannot be satisfied by any agent (fail node). 

In this case, the Planning Agent will delete the fail node, performing the backtracking; 

if the deleted node is the last not-empty node, the Planning Agent will detect the initial 

problem has no solution. Upon the Planning Agent receives a satisfied goal notification, 

it will tell Action Agents that the set of active goals has been modified. Then, as soon as 

possible, the Action Agents must read the new set of active goals. It could happen that a 

Action Agent is using an obsolete set of active goals. However, it is not difficult to see 

this situation will not be problematic due to the hypothesis 1. Moreover, the Planning 

Agent must be able to notice the search tree has been completed. In that situation, the 

set of active goals is empty; hence, when the Action Agents try to obtain this set, after 

receiving a satisfied goal notification,  they will obtain an empty set. Then, they have to 

notify this event to the Planning Agent, so that this agent will be able to determine the 



best plan for the initial problem. Finally, the Planning Agent will report the best plan to 

the Tutoring Agent. 
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Figure 4. Planning Agents and Blackboard 

According to the explanation presented above, the blackboard must support four 

operations: 

• Initialize the blackboard. 

• Obtain the active goals that were not examined by a certain agent yet. 

• Satisfy some active goals: for each goal, a ground action must be provided. 

• Obtain the best plan. 

PATH PLANNING 

After obtaining the plan, the tutoring agent will have the sequence of actions that each 

student has to carry out in the VE to solve a problem. However, the tutoring agent will 

also need to know the best trajectory for each displacement that the avatar must do in 

the VE. In this way, the tutoring agent will be able to check whether the trajectory 



followed by the student in the VE is acceptable, that is, whether it is close enough to the 

best trajectory for each movement. The agents in charge of generating the trajectories 

will be the Path-planning Agent and the Objects and Inhabitants Information Agent. 

The Objects and Inhabitants Information Agent contains a geometrical model of the VE 

expressed by means of several graphs. These graphs will have been obtained prior to the 

planning process from geometrical information related to the VE.  

We assume the VE to be divided into several rooms (sub-environments) joined by 

doors. Then, we use a graph to model the accessibility among the rooms (Environment 

Graph). Furthermore, we use a different graph for each room to model the accessibility 

of the different positions (Room Graph). In order to obtain the graph of each room, we 

model each room as a 2D-grid in which each free square corresponds to a node of the 

graph. We decide whether a square is free by using the projection over the floor of all 

the objects existing in the room. In this way, if a part of the projection of an object is 

inside an square of the grid, this square will not be free. Besides, an edge between two 

nodes A and B is added to the graph if the two squares associated to the nodes share a 

side in the grid. The size of the squares must be adjusted correctly. Otherwise, if the 

squares are too big, some feasible trajectories may be considered wrong; or if the 

squares are too small, the computational cost of the search process that will be 

explained later will increase unnecessarily. In addition, the process to obtain the graphs 

from the 3D information of the VE can be done automatically. 

The trajectory for each 2D-movement included in the plan will be determined after 

working out the whole plan. Before starting to generate the trajectory for a certain 2D-

movement, it will be necessary to update the graphs according to the actions to be 

executed prior to the 2D-movement in the plan. For example, if the position of a table is 

changed, the previous position of the table may be traversed by a trajectory afterwards. 



As the Planning Agent does not know the semantics of the actions, it will tell the 

Interaction agent to decide if it is necessary to update the graphs according to each 

bound action. In turn, the Interaction Agent will notify the Objects and Inhabitants 

Information Agent the changes in the position of the objects in the 3D-world, so that the 

Objects and Inhabitants Information Agent can modify the graphs.  

After the update of the graphs, the Path-planning Agent must find out whether the 

movement traverses more than one room. If it does, the Path-planning Agent will use 

the Environment Graph to obtain, if it exists, the sequence of rooms that the avatar must 

traverse from his initial position to his final position. Next, the trajectory across each 

room must be obtained. For this, the Room Graphs will be used. If the movement 

traverses just one room, the unique graph to use will be the graph associated to this 

room. In order to work out the path between two nodes in the graphs, the A* algorithm 

(Hart et ál., 1968) is applied under the assumption that all the edges’ weights are one, 

and using as heuristic function the euclidean distance. Each time the Path-planning 

Agent needs to know the nodes directly connected to a node in a graph, it will ask it to 

the Objects and Inhabitants Information Agent. 

The A* algorithm outputs a sequence of nodes that the Path-planning Agent will 

translate into a sequence of points or trajectory in the VE with the help of the Objects 

and Inhabitants Information Agent. This trajectory will be saved into a XML file, so 

that the Tutoring Agent can employ this information to supervise the movements of the 

students later on. 

COORDINATION AMONG AGENTS DURING THE SUPERVISION STAGE 

Once the expert solution for a given activity has been calculated, the IVET enters the 

Supervision Stage, in which: 



- the Individual Communication Agents will observe the behaviour of the 

different team members and will inform about it to the Tutoring Agent through 

the Central Communication Agent,  

- the Tutoring Agent will compare the real behaviour to the expected behaviour 

provided by the Expert Agent and it will evaluate the adequacy of each student’s 

behaviour,  

- the Historic Agent will register the actions performed by each student, 

- the Knowledge Modeling Agent will infer and model the state of knowledge of 

each student, with the help of the Cognitive Diagnostic Agent in case of errors. 

- the Psychological Agent will use the behaviour of the student to infer 

psychological chararacteristics, 

- the Tutoring Strategy Agent will decide on the next step to be taken, considering 

the last actions of the student (provided by the Historic Agent), his/her state of 

knowledge (provided by the Knowledge Modeling Agent), his/her psychological 

state (provided by the Psychological Agent), and the learning objectives and 

structure of the subject matter (provided by the Curriculum Agent). The decision 

might be to wait for new actions of the student, to use the embodied tutor to give 

a hint, to congratulate the student, to explain why something was wrong, etc. 

DEVELOPMENT OF A NEW IVET 

One of the advantages of the proposed architecture is that it has allowed us to build a 

basic infrastructure of agents that work as a runtime engine. In order to develop a new 

IVET, it will be the author’s responsibility: to select the desired agents among the 

available ones (for instance selecting the Tutoring Strategy Agent that implements the 

desired tutoring strategy); to configure the parameters that govern the behaviour of 

those agents (for instance the duration of the session, the number of mistakes that will 



be allowed before the Tutoring Agent tells the student the correct answer, etc.); to 

provide the data specific to the new IVET and subject matter (the geometrical model of 

the VE, the curriculum, the actions that are possible in the new VE and their effects on 

the simulation, etc.); and in the worst case to create new agents and register them in the 

platform.  

The requirements for the new IVET under development should be driven by real world 

studies (Economou et ál., 2001), and these requirements will drive, in turn, the design 

decisions regarding the configuration and adaptation of agents. 

As a prototype application of our tool we have developed a training system for nuclear 

power plants operators. We had previously developed this system from scratch in 1999, 

during a one year period. The re-development using our infrastructure has just taken a 

few weeks, and the achieved functionality is superior. For instance, the previous 

implementation was for only one user, the tutor was not embodied, and the 

communication tutor-student was restricted to correction feedback. The decrease in 

development time and the increase in functionality suggest that we have successfully 

achieved our aim. A thorough experimental evaluation of the effectiveness of the 

solution is out of the scope of this paper. 

PRACTICAL REALIZATION 

The agent-based architecture for VETs that was described in the previous sections has 

been implemented with a combination of quite heterogeneous technologies. 

The agents have been implemented in Java, and the direct communication among them 

has been realized using the Jade platform with FIPA ACL messages. The 3D VE and 

avatars have been modeled with 3D Studio Max and imported into OpenGL format with 

a specific tool developed for that purpose. The visualization of the 3D models, 

animations and interactions are managed by a program in C++, making use of the 



OpenGL graphical library. Microsoft’s DirectPlay library has been used for direct 

communication among the different 3D graphical environment views in order to take 

into account the movements and actions of the other students for real-time update of 

each view. Microsoft’s DirectInput has been used to manage some interaction devices, 

namely the mouse, keyboard and joystick. The head mounted display and data glove 

inputs and outputs are managed by specific libraries. Communication among the C++ 

VE and the Java agents is performed by using a middleware of CORBA objects. 

CONCLUSIONS 

An agent-based architecture is proposed in this paper for the design of Intelligent 

Virtual Environments for Training. The roots of this architecture are in the generic 

architecture of an Intelligent Tutoring System, that has been firstly extended to be 

applicable to IVETs, and has been then transformed into an agent-based architecture by 

the identification of the set of generic agents that would be necessary to accomplish the 

tasks of each module. Some details are provided about the most remarkable interactions 

that will be established among agents during the system’s execution, namely the 

collaborative planning to find expert solutions to the situations and goals posed to the 

students, the determination of trajectories for the movements across the VE, and the 

supervision of the student’s behaviour. Some peculiar aspects are also discussed, such 

as the way to manage multiple views in a multi-user environment or the way to balance 

the individual versus the collective aspects in the system’s functioning. 

The proposed architecture, and its realization in a platform of generic and configurable 

agents, will facilitate the design and implementation of new IVETs, maximizing the 

reuse of existing components and the extensibility of the system to add new 

functionalities. 
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