ColibriCook:
A CBR System for Ontology-Based Recipe
Retrieval and Adaptation™

Juan DeMiguel, Laura Plaza, and Belén Diaz-Agudo

Department of Software Engineering and Artificial Intelligence,
Universidad Complutense de Madrid, Spain.
{1tkerensky@gmail.com, lplazamorales@gmail.com, belend@sip.ucm.es}

Abstract. In this paper we present ColibriCook: a CBR system for
ontology-based cooking recipe retrieval and adaptation. The system’s
purpose is to participate in the 1st Computer Cooking Contest, organized
by the European Conference on Case-Based Reasoning (ECCBR’08), at
the University of Trier, Germany. CBR is based on a best-adaptation
likeness paradigm between ingredient sets, with a domain ontology pro-
viding one-on-one fuzzy ingredient similarity. A number of other machine
learning techniques are used to calculate, propagate, compare and adapt
other recipe properties.

1 Introduction

In this paper we present ColibriCook', a CBR system for the cooking domain.
This system was developed as the final evaluation assignment for a graduate
course in Machine Learning at the Universidad Complutense de Madrid. The
aim is to create a system capable of competing in the 1st Computer Cooking
Contest, held at the ECCBR’08. The rules for the contest are quite simple:
given a query asking for a recipe with a set of requirements, the system should
retrieve and adapt an already existing recipe to meet those requirements. For
further information, refer to the Cooking Contest website?.

The implementation is based on the JCOLIBRI2 [8] case-based reasoning
framework?. Basically, ColibriCook is a knowledge-intensive CBR system that
deals with the four classical steps in the CBR cycle, and also supports a number
of other machine learning techniques.

The paper is organized as follows: first, we take a look at the ColibriCook
general system architecture (section 2). We then perform a running example
to show how the system actually works (section 3). Next, we evaluate the final
result (section 4). Finally, we draw some conclusions and describe some lines of
future work (section 5).

* Supported by the MID-CBR project (TIN2006-15140-C03-02)

! http://gaia.fdi.ucm.es/projects/cookingContest /cookingContest. html#jcolibricook
2 http://www.wi2.uni-trier.de/eccbr08/index.php?task=ccc&act=2

3 http://gaia.fdi.ucm.es/projects/jcolibri/jcolibri2 /index.html

2 System Architecture

In this section we describe the ColibriCook system architecture. We have used
the JCOLIBRI2 java-based CBR framework [8] as the basis for the architecture.
More specifically our system is based on the JCOLIBRI ontology extension|[6)
where we have include different variations. ColibriCook includes mechanisms to
retrieve, reuse, revise and retain cases and it is designed to be easily extended
with new components.

2.1 High Level Design

The Computer Cooking Contest rules and requirements are the direct inspira-
tion for the high level decisions that guided us in the system’s design phase.
They hinted to a knowledge-rich approach to CBR. Based on this fact, the main
features of the system design might be described as follows:

— Ontology: most of the system domain specific knowledge resides in a custom
built ontology. Complete recipes are not stored in the ontology.

— Case Base: the cases (recipes) as a whole are stored in a custom built
XML database. The original recipes are processed to expose relevant data
(ingredients and types).

— Ingredient Similarity: the degree to which an ingredient might be substi-
tuted by another is computed as a real, continuous value.

— Best adaptation likeness paradigm: our similarity function compares
the query with the best possible adaptation of the inspected case.

— Other ML techniques: The cuisine type of a recipe is not available in the
database provided by the contest organization. However, this information
is necessary to properly solve some queries. For this reason, we have used
the Weka Data Mining Software* to construct a supervised classifier for
predicting this type (see section 4.1).

2.2 Ontology Design and Use

The system uses a domain ontology built with Protégé®. We reviewed some
already built domain ontologies, but we found them impractical for our purposes.
The ontology is used to store the following concepts:

— Ingredients: all the knowledge about the ingredients is stored here. Ingre-
dients might be classes, and thus denote “generic” ingredients, or instances,
which are specific ingredients.

— Formal Type: the general type of a meal. Again, it is a hierarchy of classes
and instances. For example, “cake” is a kind of “dessert”.

— Cuisine Type: the ethnic origin or style of the recipe. Currently has a flat
structure, but it can be easily extended to contain concepts such as that an
Italian recipe is a Mediterranean recipe.

4 The University of Waikato Weka Project: http://www.cs.waikato.ac.nz/ml/weka/
5 Protégé: www.protege.stanford.edu

— Dietary Type: dietary restrictions that a recipe might satisfy. For example,
a “vegetarian” recipe does not include meat.

— Ingredient Type: properties used to derive dietary types. For example,
“vegetarian” recipes cannot contain ingredients of “animal” type, but might
contain “milk” or “egg” ingredient types.

Each ingredient is described by the following properties:

— Identifier: obviously, a unique name. This name is intended, mostly, for
internal use. An independent component is in charge of “translating” textual
ingredients to ontology ones.

— Father-Similarity: this property tells us how well the parent class of this
ingredient might be substituted by it. For example, “mutton” has a 1.0
father similarity with its parent class, “sheep”, which means that mutton
is basically equivalent to sheep meat. On the other hand, “sheep” has a 0.6
similarity with its parent “red meat” class, which means that, while certainly
being a type of red meat, “sheep” it’s not the most common substitution for
“red meat”.

— Is-Ingredient-Type: this property tells us to which ingredient class, if any,
this ingredient belongs. For example, “mutton” is “animal meat”.

— Is-Made-Of: for composite ingredients. For example, mayonnaise is made of
“vegetable oil” and “eggs”. This knowledge helps us to propagate ingredient
properties.

— Availability: some ingredients can derail a similarity comparison between
recipes. For example, whether a recipe contains water or not is usually ir-
relevant. To help the similarity function, ingredients are classified into avail-
ability groups.

— Is-Substitutable: an ingredient might have an arbitrary substitutability re-
lationship with any other ingredient. Substitutability relationships are com-
plex and do not necessarily follow any specific parent-child taxonomies.

One of the key aspects of the ontology usage is how substitutability values
are computed. The substitutability value for a given ingredient pair is computed
by following all possible paths between both ingredients. At each path step,
substitutability values are combined in order to obtain a total path value. Finally,
the shortest (i.e. whichever yields a higher substitutability value) path is chosen.

Currently, the ontology holds 570 ingredients, both generic and specific, and
the recipe data base has 298 instances.

2.3 Similarity Computation

We have followed what we call the best-adaptation likeness paradigm. The idea
is very simple: the similarity of a problem solution with a problem description
is equal to the similarity between the best-possible adaptation of the problem
solution to meet the query’s requirements. The retrieve and reuse steps of the
CBR cycle are thus combined.

The domain determines that we are basically going to compare ingredient
sets. But defining a specific semantic for ’set-likeness’ is elusive. Many different
measures are available, but the problem is assigning them an intelligible semantic
so the user understands what the system is trying to accomplish. We identified
two very different but useful semantics:

— “At least” semantics: this means that we want at least all the desired
ingredients in the target recipe, but we do not care if additional ingredients
are needed. This will be used, for example, when trying to come up with
ideas for a meal.

— “Just” semantics: here we do not only want all the desired ingredients in
the target recipe, but any ingredient not explicitly specified is supposed to
be unavailable. This will come in handy, for example, when matching the
contents of a fridge to a viable recipe.

The details of the similarity function as a whole are somewhat complex, but we
can coarsely describe it as:

— Desired: first we look into the target recipe for desired ingredients. Ingre-
dients in the target recipe might be substituted to better match the query.
Obviously, more and more like ingredients imply a higher similarity.

— Forbidden: next we check for forbidden ingredients. Ingredients might be
forbidden for a variety of reasons: dietary practices, explicit input by the user
or unavailability. Ingredients might get substituted accordingly, if needed and
possible. Higher ratios of forbidden ingredients imply a lower similarity.

— Types: we check for similarity between the query’s miscellaneous types and
the target recipe’s. Dietary practices are enforced by the previous step. For-
mal type is checked using the ontology of formal types and its “is-a” rela-
tionship. Cuisine type is inferred using a machine learned classifier.

Each step generates a similarity value between 0 and 1. Finally, we com-
bine these three values to arrive to a final similarity value. This value and the
corresponding adaptation are then returned as output.

3 Running Example

In this section we run an example query through the system to help to understand
how it works. The application is built around the four classical steps in a CBR
cycle: retrieve, reuse, revise and retain. Each step has an associated action: query,
select, done and store.

Retrieve. In this step the user enters a query. The application’s interface is
shown in figure 1. The query is made of:

— Desired Ingredients: the user might enter a list of desired ingredients for
the requested recipe.

JColibriCook
RETRIEVE | REUSE

RETAIN

INGREDIENT | || _croose |
DESIRED INGREDIENTS UNWANTED INGREDIENTS I3 HLE e
[Main Course [~|
| ADD | | REMOWE | | ADD | | REMOWE |
CUISINE TYPE
ZUCCHINI ONION MEDITERRANEAN [~ |
PARMESAN_CHEESE BELL_PEPPER
SOUR_CREAM DIETARY TYPE
MACARON
PINGON_MUT
MARGARINE
GARLIC NON_ALCOHOLIC
OLVE_DIL NUT_FREE
(@) AT LEAST THESE INGREDIENTS
() JUST THESE INGREDIENTS
[[] uNWERSAL INGREDIENTS
[] common merEDENTS

Fig. 1. JColibriCook Retrieve Step

— Forbidden Ingredients: the user might enter a list of ingredients that she
does not want in the requested recipe, too.

— Comparison Semantics: the preferred semantic for the ingredient set com-
parison. Under the “Just” semantics the two small checkboxes allow the user
to specify that universal and / or common ingredients might be assumed as
available.

— Types: each recipe belongs to a formal or general type (“main course”,
“dessert”, “soup”, etc.), a cuisine type (“Mediterranean”, “Mexican”, “Ori-
ental”, etc.) and any number of dietary types (“nut free”, “non alcoholic”,
“vegetarian”, etc.). The user might left them unspecified.

For the example we chose zucchini, parmesan cheese, sour cream, macaroni,
pine nuts, margarine, garlic and olive oil as desired ingredients. We do not want
onion or bell pepper. Finally, we want a Mediterranean first course, but we don’t
care about dietary practices.

When the user is satisfied with her selection, she can press the query button
in order to advance to the next step.

Reuse. When the query is processed, the user is prompted to choose a recipe
from the list of the five closest matches to her query. When the user has chosen
a recipe, she can press the select button to proceed.

Revise. The next screen shows the selected recipe and the system’s best adapta-
tion effort. In the example we can see how the system has (sensibly) substituted

JColibriCook
RETRIEVE | REUSE | REVISE | RETAIN

RECIPE: Fettucini With Eroccoli Pesto

RECIPE TYPE
4 ¢ Broccoli (flower part onlhy) | 4| INGREDIENT [SUBSTITUTICH! n
1 ¢ Walnuts BROCCOLI LUCCHINI £
344 ¢ Small chunks Parmesan ALNUT PINON_NUT CUISINE TYPE
1 ¢ Olive oil PARMESAN_CH.. |PARMESAN_C... MEDITERRANE... u
1pn Salt = OLIVE_DIL OLIVE_DIL L
2 oz Fettucine SALT SALT DIETARY TYPE
1 Garlic clove FETTUCCINE MACARONI
1/4 ¢ Butter —{ |GARLIC GARLIC | =
1th Lemnon juice — |BUTTER MARGARINE —| GAN
4 iaria el = LERON LERON = OTHER
NON_ALCOHOLIC
: NUT_FREE
REASON: ZUCCHINIwas desired
In food processor combine first G ingredients to make pesto. In a large pan saute on
e crushed garic clove in buotter, stirin lemon juice. When thoroughly blended add t
he cream. Cook about20 seconds. Add to cooked fettucini, and lightly toss with a pi
nch of parsley. Add the broccoli pesto to taste, and serve with extra grated Parmesa
n cheese.

Fig. 2. JColibriCook Revise Step

broccoli by zucchini, walnuts by pine nuts and fettuccine by macaroni. Both
formal and cuisine type match, and, additionally, we’re told that the recipe is
alcohol free. The user might now go back to a previous step to refine her query
or, if she is satisfied with the result and wants to retain it, press the done button
to advance to the next and final step.

Retain. In this step the user might retain the result for use in future queries.
A new recipe must have, at least, a unique name. Additionally, the user is ex-
pected to modify the textual description of the recipe to match the new one.
The application’s interface is shown in 3. In the example, we have retyped the
“lc Walnuts” as “lc Pine Nuts”. The instructions should be update to reflect
this fact, too. When the user is done, she might press the store button to update
the case base with the new recipe.

4 Evaluation

The present section is organized into two subsections: in the first one we evaluate
different classifiers at the task of learning the cuisine type of a recipe, while the
second one is devoted to analyze the results achieved when running the contest
query examples on ColibriCook.

JColibriCook
RETRIEVE | REUSE

RECIPE: |Fetlucini With Brocooli Pesto |

RECIPE TYPE
INGREDIENTS | NEW | | UPDATE | | REMOVE | Main Course ||
BROCCOLI |*| | TEXTUAL DESC. |1 ¢ Pinon Muts) CUISINE TYPE
ALNUT MEDITERRANE... | v |
FARMESAN_CHEESE ONTaLOGY
OLIVE_DIL |[select | DIETARY TYPE
SALT =
FETTUCCINE PINON_NUT
cARLIE
BUTTER
DEL
LEMON - - NON_ALCOHOLIC
AUlE coE Akl h NUT_FREE
In food processor combine first G ingredients to make pesto. In a large pan saute on
e crushed garlic clove in butter, stirin lemon juice. When thoroughly blended add t
he cream. Cook about 20 secands. Add to cooked fettucini, and lightly toss with a pi STORE
nch of parsley. Add the broccoli pesto to taste, and senve with extra grated Parmesa
n cheese.

Fig. 3. JColibriCook Retain Step

4.1 Cuisine Type Classifier

As already mentioned (section 2), in order to build a classifier for inferring the
cuisine type of a given recipe, we have conducted experiments using several of
the machine learning algorithms implemented in Weka.

For this purpose, we first constructed the training set, in which each instance
represents a recipe and each attribute indicates the presence or the absence of
an ingredient in the recipe. The class attribute is the cuisine type of the recipe
and can take any value defined in the ontology under the Cuisine Type concept.

Next, we applied dimensionality reduction to the dataset, using the Weka fil-
ter AttributeSelection and the algorithm CfsSubsetEval, and reducing the orig-
inal attribute set from 282 to 26 attributes. Due the full detailed experiment
results being too extensive to be fully depicted in this paper, we present just
the most significant ones. Finally, both experiments were carried out using cross
validation on the training set with a fold value of 10 (see table 1). The Bayes
Net method seems to give the best results.

4.2 Cooking Contest Challenges

To finish the evaluation section, we now run the exercises queries provided for
the Computer Cooking Contest on the ColibriCook system. These results can
be seen in table 2 and are further discussed below.

[Original Set[Reduced Set
DecisionTrees
J48 63.7255% 71.5686%
LMT 71.5686% 78.4314%
Rules
JRIP 61.7647% 63.7255%
PART 62.7455% 66.6667%
NNGE 63.7255% 70.5882%
Functions
SimpleLogistic 70.5882% 78.4314%
PerceptronMultiLayer| 76.4706% 75.4902%
SMO 76.4706% 79.4118%
Lazy Methods
1B1 62.7455% 69.6078%
IBK k=2 59.8039% 75.4902%
LWL 53.9216% 61.7647%
Bayesian Methods
NaiveBayet 63.7255% 80.3922%
BayetNet 77.4510% 82.3529%

Table 1. Weka experimentation results

Exercise 1: Cook a main dish with meat and cauliflower. The retrieved
recipe is a main course as requested, and there is no need modify it. No
restrictions are imposed on the cuisine or dietary types.

Exercise 2: I would like to have a nut-free cake. The retrieved recipe is a
nut-free cake, and so it observes the restrictions imposed by the query. Again,
it’s not necessary to change or remove any ingredient. No restriction is imposed
on the cuisine type.

Exercise 3: Prepare a Chinese dessert with fruit. The retrieved recipe is
a “sweet”, which is classified in the ontology as a specific kind of “dessert”. It
also obeys the restrictions on the desired ingredients and cuisine type. There is
neither need to perform any substitution nor to remove any ingredient. No
restrictions are imposed on the dietary type.

Exercise 4: Cook a main dish with turkey, pistachio, and pasta. In
order to have a recipe that contains the desired ingredients, the “chicken” is
replaced by “turkey”. The remaining ingredients, “pistachio” and “pasta”,
were present in the original recipe, so no further changes are needed.

Exercise 5: I would like to cook eggplant soup. The “zucchini” in the
original recipe has been replaced by “eggplant”. The rest of the ingredients
remain unaltered. It observes the restrictions imposed by the query on the
formal type.

Exercise| Sim Name Formal Type|Cuisine Type|Dietary Type

1 0.975| Scalloped Turkey Main Course Unknown Nut Free
and Cauliflower Non alcoholic

2 1.0 Chocolate Cake Cake Unknown Nut Free
Non alcoholic

Vegetarian

3 1.0 Lychee Sherbet Sweet Oriental Nut Free
Non alcoholic

Vegetarian

4 0.93 Chinese Oriental Main Course Oriental Nut Free

and Pistachio Chicken

5 0.87 Vegetable Soup Soup Mediterranean Nut Free

6 1.0 Picnic Rice Salad Salad Unknown Nut Free
Non alcoholic

Vegan

Table 2. Contest exercises results

Exercise 6: I want to have a salad with tomato but I hate garlic and
cucumber. The retrieved recipe is a salad, as desired, with “tomato” and
without “garlic” and “cucumber”, so there is no need to modify it. No
restrictions are imposed on the cuisine and dietary types.

5 Conclusions and Future Work

The first conclusion we have reached as a result of our work on the system is
adaptation likeness, meaning that the best-adaptation likeness paradigm seems
to work well. Its main disadvantage is, obviously, the run-time efficiency. But
even in our blatantly non-optimized prototype, complex queries are resolved in
a matter of seconds.

Fuzzy Similarity, the way in which the ingredient substitutability property
values are computed, has shown itself to be simple yet powerful. It allows us to
maintain an intuitive taxonomy while, at the same time, it lets us infer arbitrarily
complex similarity relationships.

Another important conclusion is that the use of machine learned classifiers
can help CBR systems when some case properties are hard to manually infer. In
our example, the cuisine type is often not available with the recipe description
but, still, is needed to properly process queries and case base updates.

Regarding the scalability of the system, we have found that it’s quite easy to
enter new recipes. Entering new ingredients is more problematic, as extending an
ingredient that already was an individual requires some further modifications.
From a efficiency point of view, we have little doubt that system, being still a
non optimized prototype, can handle the contest’s required data set.

We think that the ColibriCook system does a fairly good job at what it was
designed to do. Even then, it is obvious that it merely scratches the surface of

the problem domain. Cooking is a complex task, and there’s a lot of further work
to do.

The similarity function, the core of the CBR system, has been shown to
be fairly competent. But, unsurprisingly, it fails to fully capture the concept
of recipe similarity. An area that allows for a lot of work is the comparison
semantics, specifically on what means to compare two sets of ingredients. “At
least” and “Just” semantics are only a coarse grained approach to the problem.

The most glaring limitation of system’s adaptation method is that it can
only replace an ingredient with another, or remove it altogether. It can’t add
an ingredient to an already complete recipe. In order to add ingredients to an
existing recipe, substitutability relationships are not enough.

We could, for example, build an ingredient co-occurrence model: which in-
gredients always appear with which ingredients. For example, “meat” is often
accompanied with potatoes, so an existing recipe using meat could be adapted
to have them, too. An added bonus is that it’s plausible to automatically deduce
this model from the case base using inductive techniques like Formal Concept
Analysis [2].

The system does not currently support the computer cooking contest’s menu
challenge: the composition of a three-course menu based on the available recipes.
Ideally, we would want to support this type of query in the final implementation.

Finally, it would be an interesting improvement to include some kind of cre-
ativity in the system. This would allow to produce recipes significantly different
to those retrieved from the case database and with a touch of originality.

References

1. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.: The
Description Logic Handbook: Theory, Implementation, Applications. Cambridge
University Press (2003)

2. Diaz-Agudo, B., Gervés, P., Gonzalez-Calero, P.: Adaptation guided retrieval based
on formal concept analysis. In Ashley, K., Bridge, D., eds.: Case-Based Reasoning
Research and Development, Procs. of ICCBR 2002. LNAI 2689, Springer Verlag
(2003) 131-145

3. Hammond, K.J.: Case-based planning: A framework for planning from experience.

Cognitive Science 14 (1990) 385-443

Kolodner, J.L.: Case-Based Reasoning. Morgan Kaufmann Publishers (1993)

5. Lenz, M., Bartsch-Sporl, B., Burkhard, H.D., Wess, S.: Case-based reasoning tech-
nology, from foundations to applications. In: Case-Based Reasoning Technology.
Volume 1400 of Lecture Notes in Computer Science., Springer (1998)

6. Recio-Garcia, J., Diaz-Agudo, B., P.Gonzdlez-Calero, Sanchez-Ruiz-Granados, A.:
Ontology based CBR with jCOLIBRI. In: Applications and Innovations in Intelli-
gent Systems XIV. Proceedings of AI-2006, Springer (2006) 149-162

7. Witten, I.LH., Frank, E.: Data Mining: Practical maching learning tools and tech-
niques. Second edition edn. Morgan Kaufmann (2005)

8. Diaz-Agudo, B., Gonzélez-Calero, P., Recio-Garcia, J., Sdnchez, A.: Building cbr
systems with jcolibri. Special Issue on Experimental Software and Toolkits of the
Journal Science of Computer Programming 69(1-3) (2007) 68-75 Impact Factor
0.734 Journal Citation Reports 2005, published by Thomson Scientific.

e~

