
An Expert System for the Composition of
Formal Spanish Poetry

Pablo Gervás
Universidad Europea - CEES, Madrid

pg2@dinar.esi.uem.es
www.uem.esi.es/~pg2

Abstract: The present paper presents an application that
composes formal poetry in Spanish in a semiautomatic
interactive fashion. ASPERA is a forward reasoning rule-
based system that obtains from the user basic style parameters
and an intended message; applies a knowledge-based
preprocessor to select the most appropriate metric structure
for the user's wishes; and, by intelligent adaptation of selected
examples from a corpus of verses, carries out a prose-to-
poetry translation of the given message. In the composition
process, ASPERA combines natural language generation and
CBR techniques to apply a set of construction heuristics
obtained from formal literature on Spanish poetry. If the user
validates the poem draft presented by the system, the resulting
verses are analysed and incorporated into the system data
files.

1. Introduction
The automatic generation of text is a well established and promising problem in AI,
with numerous practical applications waiting in the sidelines for efficient and
acceptable solutions. Existing systems have shown reasonable results in restricted
domains [3,7,9], opening the way to considering how more elaborate texts - from
the point of view of aesthetics and reader satisfaction - can be obtained [2,4,8]. The
composition of poetry ranks among the most challenging problems of language
generation, and is therefore a good testbed for techniques designed to improve the
quality of generated texts. ASPERA (Automatic Spanish Poetry Expert and
Rewriting Application) is a prose-to-poetry semiautomatic translator. By ingenious
use of well accepted AI techniques (Natural Language Processing, Case Based
Reasoning, Knowledge Based Systems), the application obtains from the user a
prose description of the intended message and a rough specification of the type of
poem required (length, mood, topic); selects appropriate metre and stanza (by
resorting to a knowledge base on literary style); generates a draft of the poem (by
applying CBR techniques to a database of previous poems); requests modification
or validation of the draft by the user; and updates its own database of information
(using NLP techniques to extract all the required linguistic information from the

validated poem). ASPERA is designed to be used as a teaching aid for specific
information technology subjects of the degree on Translation and Interpretation at
the Universidad Europea - CEES.

2. Problem Description
On first acquaintance, the generation of poetry involves advanced linguistics skills
and common sense, two of the major challenges that face AI in general. On the
positive side, poetry has the advantage of not requiring exaggerate precision. To a
certain extent, imposing restrictions over the form of a poem implies a slight
relaxation on the specification of the content. Under this assumption, the general
problem becomes tractable. There are three main challenges to be faced:

1. a specification of the formal requirements that define a correct poem under
classical literary rules (in a format that can be used to drive the construction
process)

2. appropriate management of an extensive vocabulary (the choice of words plays
an important role in determining the quality of a poem)

3. correct combination of words in the poem to match both the intended message
and the chosen metric structure

2.1 The Formal Rules of Spanish Poetry
The fact that the application was to be developed in Spanish presents important
advantages over other languages. The phonetics of Spanish are quite
straightforward to obtain from the written word. Most letters in Spanish sound the
same wherever they appear in a piece of text, so the metrics, or the syllabic
division, of a verse can be worked out algorithmically [11]. Spanish scholars have a
love for rules, and there is a good set of formal rules [10] describing the conditions
that a poem must fulfil in order to be acceptable.

The challenge becomes a simple problem of transforming the given evaluation rules
(designed to be applied to an existing poem in order to ascertain its acceptability)
into the corresponding construction rules.

Given that words are divided into syllables and each word has a unique syllable that
carries the prosodic stress, the constraints that the rules have to account for are the
following:

1. Specific strophic forms require different number of syllables to a line

2. Syllables may be run together under specific conditions - this is a form of
poetic license called synaloepha - thereby shortening the syllable count of the
line involved

3. The position of the stressed syllable of the last word of a line affects the
metric count for that line (adding or subtracting one syllable to the count)

4. Not all possible stress patterns for a line are valid (depending on the length)

5. The rhyme of a word is made up of the last half of its stressed syllable and all
following syllables to the end of the word, and each strophic form requires a
different rhyming pattern

A poem may be an unstructured sequence of lines, but for the purpose of this
application only poems of regular strophic forms are considered. For the purposes
of the present application, the following strophic forms are relevant:

1. romances, a stanza of several lines of eight syllables where all even numbered
lines rhyme together

2. cuartetos, a stanza of four lines of eleven syllables where the two outer lines
rhyme together and the two inner lines rhyme together

3. tercetos encadenados, a longer poem made up of stanzas of three lines of
eleven syllables linked together by their rhyme in a simple chain pattern ABA
BCB CDC...

These three types have been chosen because each shows a different structural
characteristic.

Type 1 presents a recurring rhyme that flows all along the poem. It uses only one
rhyme, so many words that rhyme together are required for an acceptable result
(our starting data have proven to be poor choices in this respect).

Type 2 presents a very simple but rigid structure. It stands for the simplest
possible stanza with enough complexity to be distinguishable from prose (the
simplification employed with respect to syntax/semantics makes it difficult for
shorter poems to sound acceptable).

Type 3 presents a simple structure that recurs throughout the poem, but with the
rhyme changing slowly as it moves down.

A constructive implementation of these rules was developed for the WASP system
[4]. WASP was a forward reasoning rule-based system that used a set of
construction heuristics obtained from these constraints to produce a poem from a
set of words and a set of line patterns provided by the user. The system followed a
generate and test method by randomly producing word sequences that met the
formal requirements. Output results were impeccable from the point of view of
formal metrics, but they were clumsy from a linguistic point of view and made little
sense. An improved version of the construction strategies developed in WASP is
the starting point of the generating module of ASPERA.

2.2 Guiding Word Choice
The set of words available as building blocks for the composition process play a
crucial role in determining the quality of the results. Too narrow a choice of
vocabulary can lead to formal requirements not being met. Too wide a choice can
seriously reduce the efficiency of the system, leading to lengthy searches over vast
amounts of words. A trade off must be found: enough words to compose the poem
must be available, but they must all be words with a reasonable chance of finding

their way into the final result. This is a part of the problem where intelligent
solutions have a good chance of outperforming purely computational techniques.

The ASPID system [5] provided specific algorithms for the selection of a working
set of words from an initial vocabulary using methods based on similarity
calculations between the message proposed by the user for his poem and a corpus
of already validated verses. Based on the similarity calculations, the system
established a set of priorities over the complete available vocabulary. The next
word to be added to the poem draft was initially looked for only among words
marked with the highest priority, with the search extending in subsequent steps to
words of lower priority only if none had been found in the previous step. This
procedure improved search times considerably and it made possible computations
with wider vocabulary coverage and narrower constraints on strophic forms.
However, above a certain threshold (of vocabulary size and/or number of
constraints imposed on the poem) even the method of establishing a priority
ordering on the available words failed to ensure successful termination. The ASPID
method of priority assignment is retained in ASPERA, but a prior step of
knowledge-based pre-selection of the vocabulary based on user requirements has
been added.

2.3 Fitting Words to Message and Metric Structure
There are several restrictions on the actual process of composition that must be
observed.

The length of a poem is given by the number of lines (and the length of the lines) in
the chosen strophic form. The intended message must be shortened or extended to
adjust it to the length of the poem.

The basic unit for poem composition is not the sentence but the line. A poem may
contain one or several sentences, but it is in its subdivision into lines that the
constraints (position of stressed syllables, and rhyme) are imposed. A step of
planning is required to distribute the contents of the intended message over the
required number of lines.

Words at the end of lines may have additional constraints imposed on them (rhyme)
by the chosen strophic form. These restrictions must be taken into account when
planning the poem.

The words in a poem must be combined according to the syntax of the language in
question, and must make sense according to their semantics. There are two
alternative ways of achieving this: to provide the system with adequately rich
lexicon, syntax and semantics for the language involved (as done in [8]) for English
poetry), or to develop engineering solutions that achieve equivalent results without
attempting to model the imposing complexity of the human language faculty. The
former solution requires powerful tools capable of representing and manipulating
the syntax and semantics of language. For the present application, the latter
approach is preferred.

ASPERA resorts to a radical simplification of the linguistic skills underlying poem
composition. The exhaustive knowledge approach is abandoned in favour of a
heuristic engineering solution. Only the barest outline of a grammatical outline is
provided (in the form of a line pattern) to ensure syntactic correctness. Semantic
correctness is not enforced strictly, rather an approximate result is obtained by
intelligent pre-selection of the choice of words together with a memory based
approach to word combination.

The system is provided with a corpus of already validated verses. A Case Based
Reasoning approach [1] is applied to this corpus in order to generate new verses.
The words in these verses are marked with their corresponding part-of-speech
(POS) tag. A line pattern is generated from these POS tags. Each line pattern is a
set of tags, and each tag acts as place keeper for a possible word of the line. The tag
is actually a string that represents information about part of speech, number, and
gender of the word that would stand in that particular place in the pattern. Patterns
act as seed for lines, therefore a pattern determines the number of words in a line,
the particular fragment of sentence that makes up the line, and the set of words that
can be considered as candidates for the line. By following this heuristic shortcut,
the system is able to generate verses with no knowledge about grammar or
meaning.

3. ASPERA: Automatic Spanish Poetry Expert - a
Rewriting Application
ASPERA is a forward reasoning rule-based system that performs the following
sequence of operations:

1. interacts with the user to obtain a specification of the desired poem (intended
message, mood, setting);

2. searches its knowledge base to find the most appropriate strophic form to
match that specification;

3. plans a poem draft by distributing the intended message over the chosen
strophic form;

4. pre-selects and loads a task-specific vocabulary and corpus of verse examples
for each fragment of the poem by adequately combining its data files (CBR
Retrieve step I);

5. generates each of the lines of the poem draft by mirroring the POS structure of
one (CBR Retrieve step II) of the pre-selected line examples combined with
the words in the pre-selected vocabulary (CBR Reuse step);

6. presents the draft to be validated or corrected by the user (CBR Revise step);
and

7. carries out a linguistic analysis of any validated poems in order to add the
corresponding information to its data files to be used in subsequent
computations (CBR Retain step).

ASPERA is written in CLIPS, a rule-based system shell developed by NASA.
Earlier implementations were attempted using Prolog, but the nature of the line
generation part of the problem, being a constructive combination of a set of
elementary ingredients towards the achievement of a single whole which is the final
poem, lends itself more easily to a forward-reasoning mode of operation. The
system's poetry expert knowledge base had originally been coded in Prolog, but
translation onto the new paradigm was presented no special problems.

3.1 Collection of Poem Specifications
The system interacts with the user to obtain specifications of the desired poem. The
user is first asked a set of questions designed to ascertain a few elementary facts
about his intentions. These will be used by the knowledge-based module of the
system to select the right vocabulary and an adequate set of verse examples from
the available corpus.

At present, the system is designed to operate with the following parameters:

• approximate length of the poem: The user has to provide a numerical value for
the number of lines he would like to obtain. The system uses this number in
working out an adequate strophic form (or combination of strophic forms) for
the poem. The user is also asked whether the stated length is a rigid or flexible
constraint.

• rhyme structure: Some strophic forms have rigid rhyme structures (there are
constraints on the rhyme of every line) and others are more flexible (there are
constraints on only some of the lines).

• degree of formality: Certain strophic forms are more formal than others. This
distinction plays an important role in selecting the appropriate form.

• setting: The system provides a choice between an urban setting or a rural
setting. This is a very restricted choice, but it may be extended at later stages.

• mood: As a first approximation, mood is interpreted either as positive or
negative.

Length of poem and degree of formality are used specially to determine the
strophic form. Setting and mood are used to select the correct vocabulary.

Once the basic parameters have been set, the user is asked to provide a prose
paraphrase of this intended message. This paraphrase need not be grammatically
sound, and may range from a full explicit text to a set of keywords that the user
would like to show up in the poem. The intended message is stored as a list of
words in a format amenable for later use by the system:

(message Peter loves Mary they go together to the beach)
Every word in the message is considered a good candidate to contribute to the final
poem. Statistical methods of natural language processing applied in the field of
information retrieval favour an initial trimming of user queries with a view to
retaining for processing only terms that have relevance for the retrieval task. Stop

lists are applied in order to eliminate empty words (pronouns, articles,
prepositions...). For the present purposes, however, the presence of words of these
types allows the user to control the style and appearance of the final result even
more (or at least as much as) nouns, verbs and adverbs.

3.2 The Poetry Expert Knowledge Base
The Poetry Expert knowledge base contains two distinct sets of rules that encode
specific knowledge concerning the relationship between strophic forms, the user's
wishes, and the available data file. Their job is to select the best available
combination of strophic form and data files to suit the user's request.

The first set of rules concerns the choice of strophic form and the selection of data
files with the required sets of verse examples/patterns. They have been obtained by
a knowledge acquisition process performed systematically over the author's
personal experience, careful analysis of classical Spanish poetry, and available
references on poetic analysis [10]. This gave rise to a complex set of rules that
relate possible combinations of input parameters with possible outputs (strophic
forms or combinations of strophic forms). The relationship is mostly associative,
but requires a step of arithmetic calculation when processing the required length.
The decisions embodied in the rules follow roughly the following guidelines:

• formal poem → strophic forms of 11 syllables.

• informal → strophic forms of 8 syllables.

• long and flexible → romance or terceto encadenado

• short and concise → terceto

• fully rhymed → cuarteto or terceto encadenado

• loosely rhymed → romance (long) or terceto (short)

• many similar rhymes → dos cuartetos (not too long) or romance (long)

The second set of rules associates the information obtained from the user regarding
setting and mood desired for the poem with the various data files over which the
available vocabulary is distributed.

The application of the Poetry Expert knowledge base results in a message to the
user proposing a specific strophic form. If the user accepts the proposal, the
corresponding data files are loaded and the system moves onto the next stage. If the
user rejects the proposal, the system allows the users choice of strophic form to
override its own suggestion. The knowledge base is then addressed for the right
combination of data files and these are loaded. Mismatching specifications of poem
length or degree of formality and choice of strophic form may lead to non
termination.

3.3 The Elementary Planning Step
Given the user's choice of basic parameters the system uploads an appropriate
combination of data files containing vocabulary extracts. A vocabulary entry for a
word is a CLIPS fact of the form:

(word (cual desde_n) (numsil 2) (accent 2)
 (emp 0) (term 0) (cat NCMS)
 (rima en) (level nil))
An entry must provide all the necessary information for imposing the metric
restrictions: length of the word in syllables (numsil), position of stresses syllable
(accent), whether the word starts (emp) or ends (term) with a vowel, the POS tag
for the word (cat), and the rhyme (rima). An additional level field is provided to
enable priority marking of the words during later processing.

For the resulting choice of strophic form specific line patterns /examples are
loaded. A line pattern/example is a CLIPS fact of the form:

((sample (n 72)
 (patt NCMS PDEL NCMS NCMS DET PPO3FS NCFS)
 (words desde_n del cielo error de la ventura)
 (beg 0) (end 1) (level nil))
where n is a unique identifier for the specific sample, patt is the set of POS tag
corresponding to the sample - which acts as line pattern -, words is the actual line
example, beg encodes information about whether such line starts a sentence, end
encodes information about whether the line ends a sentence, and the level field is
used for priority settings.

The words in the intended message provided by the user are distributed into as
many fragments as there are lines in the chosen strophic form, retaining within each
fragment the original order of appearance. For instance, supposing the message
presented above were to be rewritten as a terceto, it would be split by the system
into the following facts:

(fragment 1 Peter loves Mary)
(fragment 2 they go together)
(fragment 3 to the beach)
This is not considered a draft of the poem, but only as an approximate distribution
of information over lines of the poem.

Figure 1 Basic structure of the ASPERA system

A module of the system works out the similarities between the line fragments and
the available line examples/patterns. Each fragment/pattern pair is indexed with a
numerical value indicating their similarity. In the initial approximation, this
similarity value is worked out as the number of POS tags they have in common.
The results of these similarity calculations are later used during the CBR Retrieve
step.

Another module counts the number of rhymes available (if any) for each of the pre-
selected words. These numbers are later used to assign specific words and patterns
to each fragment during the CBR Retrieve step: a pattern is only good for a given
line in the poem if there is a word of the necessary rhyme whose POS matches the
last POS tag in the pattern.

The CBR Retrieve step can be considered to start during the planning stage, since
line patterns/examples are assigned to the different fragments of the poem at this
stage. This is because the retrieval of resources for one line is not independent from
the assignation of resources to its neighbours. It is important, for instance, to ensure
that consecutive lines are assigned sets of patterns that allow a correct linguistic fit
between the resulting lines (the sentence fragment in the first line can be continued
with the sentence in the following one, or there are patterns for starting a sentence
on the following line if patterns in the first line include an end of sentence at the
end of the line).

3.4 The CBR Approach to Line Generation
A different CBR process is set in motion for each line in the poem. This is done
sequentially starting from the first line, but none of the different CBR processes
progresses onto its next stage until all the other processes are ready to do so as
well: all processes retrieve their vocabularies and line examples, all processes adapt
their selection to generate a new line (the revision and analysis phases can be done
in any order). This ensures that no two lines in the same poem are built following
the same pattern and that words are not repeated in a poem.

Figure 2 Verse generation using CBR

3.4.1 Retrieve step

For each fragment of the poem, adequate words and adequate line
patterns/examples must be selected. Line examples/patterns have already been
assigned during the planning stage.

A module assigns priorities to all the available words, so that only the most
adequate words are considered for each line. The criteria used in this assignation
are, in decreasing order of priority: words actually appearing in the corresponding
fragment of the intended message, words with the required rhyme for the line.

These priorities can be modified once the initial lines have been generated, to
include any words in the fragment of the intended message corresponding to
previous lines that have not been used in the generation of the actual verse.

3.4.2 Reuse step

For each set of fragment of the intended message, set of line examples /patterns,
and set of selected words, the basic generation algorithm following the constructive
rules for the appropriate line length is applied.

The elementary generation units are the line pattern being followed (which acts as
guiding form) and the draft of the current line. At each step of the generation the
words are chosen to match the next POS tag in the line pattern (always according to
their established priority ordering). If the chosen word meets the constructive
requirements, it is appended to the draft of the current line and the process is

iterated. The constructive requirements are implemented in the form of imperative
Boolean functions.

If no valid extension is found, the system allows limited backtracking: the last word
to be added can be removed and an alternative attempted. An additional process of
annotation takes place to avoid a repetition of alternatives that have already been
tried.

Additionally, the assignation of line examples/patterns to each fragment of the
poem can be revised during the Reuse step if no solution is found with the existing
assignation once all possible backtracking alternatives over the assigned words
have been exhausted. If the assignation of line example/pattern is modified, the
assignation of words may have to be revised. This new word assignation is now not
only constrained by the words assigned to previous fragments, but also by the
words already assigned to following fragments. However, if the generation process
for any previous line has already finished at that point, any words of its fragment
of the intended message that have not been used can be considered.

3.4.3 Revise step

As soon as all the generation processes have concluded, the whole poem draft is
presented to the user. The user is required to validate each of the lines. If the user
comes up with possible modifications, the system accepts them instead of the
generated verse. The modified versions suggested by the user ought to be tested for
metric correctness. This feature is not currently contemplated, under the assumption
that any corrections the user makes will either be well founded or they will be in
repair of a serious syntactic or semantic error introduced by the heuristic
approximation.

3.4.4 Retain step

All verses validated by the user are processed to create a personal data file
containing the corresponding line examples/patterns in the correct format. Any new
words introduced by the user either as part of the intended message or
modifications of the proposed draft are also added to the data. This will ensure that
regular use of the system will improve the quality of results only if the degree of
satisfaction with the initial poems is reasonable high. This implies that although the
system is capable of a certain amount of learning once a reasonable standard (of
vocabulary and stored examples) has been achieved, an initial threshold of
vocabulary and corpus adequacy must be met for the system to function adequately.

3.5 ASPERA Results: Examples
The following examples illustrate system input and resulting poem for specific
instances of use of the ASPERA system. Suppose the user expressed a desire for a
short, fully rhymed, formal poem, with a rural setting and a positive mood. The
following specification was given to guide the search in example 1:

 tan hermoso viento fue corazón mudo

The system suggested a terceto should be attempted (lines 11 syllables long
rhyming ABA), and provided a set of model poems from its case base. Model
poems were of the form given in example 0:

Sabed que en mi perfecta edad y armado
con mis ojos abiertos me he rendido
al niño que sabéis ciego y desnudo.

Example 0. Model poem

Since rhyme restrictions are imposed by the generation mechanisms independently
of the model poems, these need not follow the rhyming pattern required. The model
poems provide guidance as to the number and specific POS elements to be used in
constructing each line. Vocabulary files appropriate to the setting and mood where
loaded and the system produced the following poem:

Ladrará la verdad el viento airado
en tal corazón por una planta dulce

al arbusto que volais mudo o helado.

Example 1.

Three -viento, corazón and mudo - of the six words in the specification have made
it into the twenty words of the final verse. Six words of the poem originate in the
selected vocabulary -ladrará, planta, and arbusto through the rural requirement
and dulce, verdad, and volais from the positive mood. Two words - airado and
helado - come from the model poems. These words are forced to appear in the
poem by the additional restrictions posed by the rhyme on the final words of the
first and last line. As inexperienced human poets do, ASPERA simply chooses two
words that rhyme and happens to find more of those among the model poems1. The
rest of the words form part of ASPERA's elementary vocabulary and are used to
hold the poem together with an approximation of sense. In this particular case, the
last line of the resulting poem closely follows the structure of the last line of the
sample model poem presented. The structure of the other lines is based on different
model poems, chosen by the planning stage of the system to ensure minimal overall
coherence of the poem.

A similar analysis can be carried out for example 2:

Andando con arbusto fui pesado
vuestras hermosas nubes por mirarme
quien antes en la liebre fue templado.

Example 2.

resulting from similar general choices and the specification:

1 This behaviour may improve if enough rhyming words are provided either in the
selected vocabulary or the specification.

andando por el monte hermosas nubes una liebre

The poem as it stands is quite obscure, however, it can be seen very clearly in this
case how the specification and the motives - rural and positive - drive the system.

4. Benefits to be Expected from ASPERA
ASPERA may prove beneficial to a certain extent in two different contexts. Within
the restricted domain of tuition in the field of literature, and more widely where it
may shed light on general language problems.

4.1.1 As a Pedagogical Tool

In the long run, it is hoped that ASPERA will provide guidelines to develop better
pedagogical tools for the field of Spanish poetry. For the average person, a poem is
either pleasing or not, and the introduction of - sometimes very complex - rules to
be computed as part of its enjoyment goes against the grain on first time
acquaintance. ASPERA provides the means for students to see how the imposition
of the formal rules may affect the form of a message of their choosing, without
requiring them to have learnt all possible combinations of the rules. It is expected
that interacting with the system may help the students to develop - without learning
the formal rules - the instinctive feel for 'correctness' of a verse that a poet achieves
naturally.

4.1.2 As a Potential Source for Slim Language Processing Heuristics

The solutions applied in ASPERA to language problems are all highly heuristic in
nature, and resort to no complex linguistics techniques. The examples presented
show the advantages and the shortcomings of the approach: message content gets
scrambled for the sake of form, yet applications relying very heaviliy on specific
formats and not requiring originality may find the simplicity of the techniques
compensates for the loss of precision. From this point of view the ASPERA
system, as it is evolved to more refined heuristics solutions to language generation,
constitutes a benchmark for simplified approaches.

5. Conclusion
ASPERA is the computing heart of an application with a great potential for user
satisfaction. In its current version, it is handicapped by clumsy interfaces that are
unable to compete with state of the art GUI technology. However, the underlying
methodologies and techniques have shown their adequacy to the task even in their
budding state of development. The heuristics techniques applied to resolve
linguistic problems at all levels - syntactic and semantic - open interesting avenues
of research in language processing. The system is open to enhancement and
adaptation once user feedback has been gathered during evaluation.

References
[1] Aamodt, A. & Plaza, E. (1994). Case-Based Reasoning: Foundational

Issues, Methodological Variations, and System Approaches. AI
Communications, 7(i), pp.39-59.

[2] Bailey, P., 'A reader-based model of story generation', Symposium on
Artificial Intelligence and Creative Language: Stories and Humour, AISB'99
Convention, 6th-9th April 1999, Edinburgh College of Art & Division of
Informatics, University of Edinburgh.

[3] Chevreau, K, Coch, J., García Moya, J.A., and Alonso, M., 'Generación
multilingüe de boletines meteorológicos', Procesamiento del Lenguaje
Natural, SEPLN, N. 25, September 1999, pp 51-58.

[4] Gervás, P., 'WASP: Evaluation of Different Strategies for the Automatic
Generation of Spanish Verse', in: Time for AI and Society, Proceedings of
the AISB-00 Symposium on Creative & Cultural Aspects and Applications
of AI & Cognitive Science, 17th-18th April 2000, University of
Birmingham, England, pp 93-100.

[5] Gervás, P., 'Un modelo computacional para la generación automática de
poesía formal en castellano', in: Actas del XVI Congreso de la SEPLN
(Sociedad Española para el Procesamiento del Lenguaje Natural), Vigo,
España, September 2000.

[6] Gervás, P., 'A Logic Programming Application for the Analysis of Spanish
Verse', in: Lloyd, J., et al, Computational Logic - CL 2000, First
International Conference, London, UK, July 2000, Proceedings, Springer
Verlag.

[7] Horacek, H. and Busemann, S., 'Towards a Methodology for Developing
Application-Oriented Report Generation', in: Günter, A. and Herzog, O.
(eds.), 22nd German Conference on Artificial Intelligence (KI-98),
Proceedings, Bremen, Germany, 1998.

[8] Hisar Maruli Manurung, Graeme Ritchie and Henry Thompson, 'Towards a
computational model of poetry generation', in: Time for AI and Society,
Proceedings of the AISB-00 Symposium on Creative & Cultural Aspects
and Applications of AI & Cognitive Science, 17th-18th April 2000,
University of Birmingham, England.

[9] Nederhof, M.-J., 'Efficient generation of random sentences', Encyclopaedia
of Computer Science and Technology, Vol.41, Marcel Dekker, 1999, pp 45-
65.

[10] Quilis, A., (1985) 'Métrica española', Ariel, Barcelona.
[11] Real Academia Española (Comisión de Gramática), (1986) 'Esbozo de una

nueva gramática de la lengua española', Espasa-Calpe, Madrid.
[12] Sánchez León, F., Corpus Resources And Terminology ExtRaction project

(MLAP-93/20), 'Spanish tagset of the CRATER project',
ftp://ftp.lllf.uam.es/pub/CRATER/esT-tagger-1-0.tar.gz

	Introduction
	Problem Description
	The Formal Rules of Spanish Poetry
	Guiding Word Choice
	Fitting Words to Message and Metric Structure

	ASPERA: Automatic Spanish Poetry Expert - a Rewriting Application
	Collection of Poem Specifications
	The Poetry Expert Knowledge Base
	The Elementary Planning Step
	The CBR Approach to Line Generation
	Retrieve step
	Reuse step
	Revise step
	Retain step

	ASPERA Results: Examples

	Benefits to be Expected from ASPERA
	
	As a Pedagogical Tool
	As a Potential Source for Slim Language Processing Heuristics

	Conclusion
	References

