
A Framework for the E-R Computational Creativity
Model

Rodrigo Garcı́a1, Pablo Gervás2, Raquel Hervás2, Rafael Pérez y Pérez1,
and Fernando ArÃmbula1

1 Posgrado en Ciencia e Ingenieria de la Computacion, Universidad Nacional Autonoma de
Mexico, Mexico

rodrigog@uxmcc2.iimas.unam.mx, rpyp@servidor.unam.mx,
arambula@aleph.cinstrum.unam.mx

2 Departamento de Sistemas Informaticos y Programacion, Universidad Complutense de
Madrid, Spain

pgervas@sip.ucm.es, raquelhb@fdi.ucm.es

Abstract. This paper presents an object-oriented framework based on the E-R
computational creativity model. It proposes a generic architecture for solving
problems that require a certain amount of creativity. The design is based on ad-
vanced Software Engineering concepts for object-oriented Framework Design.
With the use of the proposed framework, the knowledge of the E-R computational
model can be easily extended. This model is important since it tries to diagram
the human creativity process when a human activity is done. The framework is
described together with two applications under development which implement
the framework.

1 Introduction

Humans apply creative solutions across a wide range of problems: music, art, science,
literature...If a common plausible model were found of the way humans approach cre-
ativity problems in all these fields, it would open possibilities of applying creative mech-
anisms to problems in a wide range of domains. The Engagement and Reflection model
of the creative process developed by Perez y Perez [1] attempted to abstract the way in
which the human brain tackles creative composition in the field of storytelling. How-
ever, the Engagement and Reflection model is postulated as independent of particular
domains. Several efforts are under way to apply it to different tasks - geometry, story-
telling, image interpretation... From the point of view of development, it would be ex-
tremely interesting if the essence of the computational model, which is common across
different applications, could be captured in some kind of abstract and reusable software
solution. This paper explores the design of an object oriented framework intended to
capture in this way the common functionalities of computational solutions based on the
Engagement and Reflection model for addressing creativity problems.

A framework is a set of classes and interfaces closely related in a reusable form
design for a family of systems with a strong structural connection (hierarchy of classes,
inheritance and composition) and of behavior (model of interaction of the objects) [2].
When an application is implemented based on a framework it is said that it is an instance
of the framework. This means that the framework’s hotpoints - places where details

A. Gelbukh and C.A. Reyes-Garcia (Eds.): MICAI 2006, LNAI 4293, pp. 70–80, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

A Framework for the E-R Computational Creativity Model 71

and specific fragments of code concerning a particular domain must be provided - are
specified to transform it into a concrete application. The framework can be seen as
the skeleton that supports the general structure and the hotpoints provide the flexibility
required to obtain different applications by different instantiation processes.

The fundamental advantage of frameworks is that they can significantly reduce the
development time for particular applications in the selected domain because of design
reuse. But there are also disadvantages that have to be considered. By introducing a
common structure for applications in a given domain, a framework may effectively
restrict the range of alternatives that a designer can consider. This can have unforeseen
consequences in terms of restricting the creative freedom of the applications that we are
contemplating.

In spite of this disadvantage, a framework can be a good solution for capturing par-
ticular methods of approaching problem solving that can be applied accross several
domains. In this paper, we work under the assumption that the computer model based
on Engagement and Reflective States can be applied to different fields such as story
development, image interpretation and graphs generation.

This paper is organized as follows. In section 2 previous work related to Design
Patterns and Frameworks and the Engagement and Reflection model is presented. Sec-
tion 3 shows the design of the framework architecture and its components. Section 4
describes three instantiation examples related to storytelling, image interpretation and
graph generation. Section 5 presents a discussion about the generalization of the E-R
creativity model. Finally, section 6 outlines conclusions and future work.

2 Previous Work

To design a framework for Engagement and Reflection computational models of the
creative process, relevant work on two different fields must be considered: framework
design and the Engagement and Reflection model.

2.1 Design Patterns and Frameworks

The development of a framework requires a significant effort of domain analysis. In
order to identify the ingredients that are common across different aplications of a given
type, several examples must be analysed carefully. Before building a framework in a
given domain one should have a solid understanding of the domain, ideally as result of
the experience gained in building prior applications in that domain.

Another important aspect concerning frameworks is the stages of evolution they pass
during their lifetime [3]. According to Tracz [4], to acquire sufficient knowledge to iden-
tify the reusable essence for building artefacts of a given kind one must have built at
least three different examples of such artefacts. This is considered the first stage in the
evolution of a framework. The second stage is a white box framework: the framework
provides a bare structure in which the user will have to introduce actual fragments of
code adapted to the particular domain in which he wants the framework to operate. The
user has to understand how the different modules in the framework work, and he may
have to write software components himself. The third stage is a black box framework:

72 R. Garcı́a et al.

the framework provides a structure and a set of software components - organised as a
component library - which constitute different alternatives for instantiating modules of
the framework. A user may put together an instance of the framework simply by assem-
bling elements from the component library into the framework structure. Later stages
in the evolution of a framework gravitate towards obtaining a visual builder interface,
to make even easier the process of building applications. However, this refinement in
not necessary in most practical applications.

2.2 Engagement and Reflection

The main goal of Engagement and Reflection (E-R) model is to provide a model of the
way in which human beings go about the task of applying abstract knowledge to creative
tasks. Human beings store an enormous amount of abstract knowledge, refined from a
lifetime of experience. This knowledge is used for solving problems. The Engagement
and Reflection model is a plausible representation of the process a human being follows
when trying to solve a problem that requires the use of abstract knowledge.

The basic unit of representation in the Engagement and Reflection model is an action.
An action has a set of preconditions and a set of postconditions.

The model is based in two main processes that form a cycle, Engagement and Re-
flection. During Engagement we produce a lot of ideas - or instances of some equivalent
conceptual material - that help us by acting as cues to solve the problem. At this stage,
restrictions such as the fulfillment of the preconditions of an action within a given plan
are not evaluated. The generation of these ideas is driven by a set of parameters or
constraints that have to be defined. This ensures that the generation process is guided
towards a specific goal. In the Reflection stage, the ideas generated during Engage-
ment are evaluated carefully, restrictions such as the fulfillment of preconditions are
enforced, and any required modifications are carried out to ensure that the partial result
at any given stage is coherent and correct.

The process of solving a problem follows a cycle of transitions between the En-
gagement and the Reflection states. At each pass through the Engagement state more
material is added. At each pass through the Reflection state, the accumulated material
is checked for consistency, completed and corrected.

The solution of a problem is a train of well structured actions based on the previous
knowledge of solved problems. If we can extract the preconditions and the postcondi-
tions of the actions problems it can be reuse for the solution of other problems in the
same domain.

The E-R model was conceived for the creative process in writing. In later research
efforts, the model has been applied in other fields like the solution of geometric prob-
lems, image interpretation problems and strategic games. These last two examples are
currently under development.

MEXICA. The E-R model was originally used in MEXICA [1]. MEXICA was designed
to study the creative process involved in writing in terms or the cycle of engagement
and reflection. MEXICA’s stories are represented as sequences of actions. MEXICA
has two main processes: the first creates all data structures in memory from information
provided by the user. The second, based on such structures and as a result of a cycle

A Framework for the E-R Computational Creativity Model 73

between engagement and reflection, produces new stories. It has the next goals: (1) To
produce stories as a result of an interaction between engagement and reflection. (2) To
produce material during engagement without the use of problem-solving techniques or
predefined story-structures. (3) To produce novel and interesting stories. (4)Allow users
to experiment with different parameters that constraint the writing process.

The Geometrician: A Computer Model for Solving Geometry Problems. Based on
the creative model E-R, Villaseñor [5] tries to solve geometric problems with the use
of rule and compass only. The user defines a text file with a set of solved problems,
then the key information from these problems is extracted and it is used as a knowledge
base for the system. When a new problem is presented to the program, it tries to find
a solution as a result of the interaction between engagement and reflection. During en-
gagement the program looks for actions in memory that could be done in order to solve
the problem, and during reflection those actions retrieved are checked before they are
executed. The program implements some learning mechanisms and some new charac-
teristics to the basic model (E-R). One of this new characteristics is the capability to
solve sub-problems in a recursive way.

Image Interpretation. The problem consists in identifying the correct outline of a
prostate in a Transurethral ultrasound image. Nowadays the experience of specialized
doctor is necessary to identify this outline. The problem is not the time required to train
doctors in this specific task, but the fact that the only way of acquiring this knowledge is
during the process of real-life prostate operations. From the data provided by an ultra-
sound image, the only accurate knowledge about a prostate is conveyed as a white area
surrounded by a dark zone. Based on the E-R model cycle of engagement and reflection
and a Point Distribution Model (PDM) [6] used by Arambula [7] the program tries to
find the most suitable outline of the prostate in Transurethral ultrasound images. As in
the previous examples, the program needs a text file containing the solved problems.
The first step of the process is to extract a set of characteristics of the image. Some
of this characteristics could be the gray scale or the maximum brightness for example.
This set of characteristics will help as cues for definition of the context which is the
state of affair of the problem. The program then searches for similar contexts in the
knowledge base acquired from the set of previously solved problems. Each of those
contexts will have an associated set of related actions that contributed to the solution
of the problem in the original case. These actions are added to the partial solution of
the current problem during the engagement phase, and they are checked for consistency
with the current problem later during the reflection stage.

3 Framework Design

The goal is to use software engineering techniques to develop a framework based on the
E-R model, reducing development time for applications based on it. At the same time
the framework - being a generic computational implementation of the E-R model will
extend the knowledge about the human cognitive process the E-R model tries to abstract.

The framework is based on two examples: MEXICA and Image Interpretation. The
implementation of the examples as instantiations of the framework is reviewed in
Section 4.

74 R. Garcı́a et al.

For ease of understanding, the structure of the proposed framework is divided in two
parts, one related to the core structure of the framework, and another one dealing with
the specific features of the E-R model.

3.1 General Structure

The core structure of the framework is based on the architecture proposed in [8] for
Natural Language Generation applications. Its general structure can be seen in Figure 1.

Fig. 1. General structure of the framework

The set of modules or stages involved in the process is stored in a StageSet struc-
ture. The choice of which modules to use is taken using the abstract class StageSet-
Factory. Its implementations, following the AbstractFactory design pattern [9], de-
fine specific sets of modules that are stored in StageSet.

With regard to the flow of control information, the decision is taken in the abstract
class ControlFlow, implemented following the Strategy design pattern [9]. A
StageSet is passed as parameter to the constructor of ControlFlow, so that the
control flow knows which modules the user has decided to use. The goal of Control-
Flow is to decide the arrangement and execution order of the stages kept inStageSet.
Decisions as executing a stage more than one time, or deciding if executing it at all, are
taken by the ControlFlow instantiations. To deal with that, ControlFlow has a
nextStage method that returns the next step to be executed, and an end method that
becomes “true” when there is no more stages to be executed.

Finally, connection between ControlFlow and StageSetFactory is found in
the abstract class ArchitectureFactory, as in the AbstractFactory design pattern
[9]. Given different set of stages and control flows, the user can decide which is the
combination of modules and flow of control information he needs in his application.

3.2 E-R Structure

The E-R structure is the specific piece of the framework in charge to carry out the
E-R creativity process. As shown in Figure 2, there are different data structures that

A Framework for the E-R Computational Creativity Model 75

Fig. 2. E-R structure of the framework

interact depending on the actual step of the process. All of them are as a last resort
descendants of the abstract class Stage, the one that is stored in the StageSet of the
basic structure.

The E-R model has two main parts: Engagement and Reflection, both of them work-
ing with similar data structures. Engagement and Reflection abstract classes are
used to help the user during the implementation of his system to know in which step is
the process and to define the content of each class. Both of them have a special method
used to query different data structures depending on the class implementation - filters
for the Engagement, Constraints for the Reflection. The most important instantiations
of the Engagement and Reflection classes are Context, Action and LTM. Depend-
ing on the stage of execution some modules will be connected and some others will be
ignored.

The correct combination of these components, together with the basic structure in
Section 3.1, will result in interesting and useful implementations of the framework.

4 Two Instantiation Examples

In order to show the use and the feasibility of the framework it will be applied to two
examples: Image Interpretation and MEXICA.

4.1 Image Interpretation

The aim of the image interpretation problem is to draw as well as posible the form
of the prostate in a Transurethral ultrasound images, such as the one in Figure 3. The
black circle in the center of the image is the device used to get the ultrasound image.
Important clues that may be used for solving the problem can be obtained from the
knowledge of the human anatomy. For example, it is known that the rectal conduit is
under the prostate. This is reflected in the image as a white region. Prostates are also
known to be roughly pear-shaped. In this example all the stages are used, the context,

76 R. Garcı́a et al.

Fig. 3. Prostate Image

the actions, the LTM, the filters and the constraints. They are managed by the StageSet
and coordinated by the ControlFlow.

The first step initiated by ControlFlow is to get a good context. This is the process by
which the system constructs a general idea of the state of affairs. This is important since
in some images it is easier to acquire the prostate form than in others. In order to get a
context, the greater possible number of characteristics of the image must be extracted.

This is done by the execution of the action Extract Characteristics for example. The
response of this action is a set of coordinates (x,y) and a graph as shown in Figures 4
and 5. This can be interpreted as an idea of the prostate form, but the most important is
that now there is a Context to work with. Once this first step has been carried out, the
ControlFlow sets in motion the next stage: Engagement.

The Engagement stage checks the actual Context against its knowledge base of al-
ready solved problems - stored in the file of experiences or LTM - in search for the
solved problem whose Context best matches with the Context of the current problem.
To achieve this, the run Previous Draft method of the LTM class must be invoked. This
method perfoms the search over the previous examples stored in the LTM class. Once a
context is retrieved, depending on the filters introduced, an action is executed without
checking the preconditions. This action is passed to the run Action Draft method of
the Action class. The only requirement for executing an action is that it must modify
the context. This is due to the fact that violation of this requirement may result in the
system entering an infinite cycle. This step may be repeated one, two or three times for
each example, depending on the requirements of the user.

Fig. 4. Prostate Image with Characteristic extraction

Once the Engagement stage has finished, ControlFlow shifts control to the Reflection
stage.

For Reflection all the stages are used. The basic idea of this step is to check the
actions executed during in Engagement. Thus, all postconditions of each action should

A Framework for the E-R Computational Creativity Model 77

be coherent with the preconditions of its follower, and the result of the executed action
should bring the system closer to solving the problem. In order to achieve the first
condition, the run Action Draft method is executed . Whenever a precondition is not
fulfilled, it is explicitly asserted in the correct place in the sequence of actions. It may
be possible that more than one precondition is not satisfied, so this step can be recursive
until all preconditions are fulfilled. In this step there are also Constraints that must be
tested. For example, a precondition of an action may be that the graph shown in Figure 5
must have at least two peak to execute the action number 5. Or it could be that the
gradient of the line can not be more than 65 degrees. In this figure the x axis represents
each profile of the prostate (0-359), and the y axis means the maximum brightness of
each profile (0-255).

To check if the action executed is bringing the system closer to solving the problem,
there are different techniques that can be applied. One possibility is to apply the form
of the PDM [6] used by Arambula [7].

This whole process is repeated until the user’s requirements have been satisfied or
until a given value of a certain parameter is reached.

Fig. 5. Prostate Graphic

4.2 MEXICA

MEXICA’s goal is to develop a computational model of the creative process of writing
in terms of engagement and reflection. The environment of the story is controlled by
the previous stories kept in the LTM. The first step in the ControlFlow is to form a
context. The context here is to set an initial action, an initial scene and the number
of characters. To achieve this, the special action Initial Actions must be called. One
important feature of MEXICA is that the user has the option to manually set these
initial data. This provides the means for guiding the output towards desireable results.
Once the initial context is built, as in the Image interpretation problem, and depending
on the users parameters, ControlFlow initiates the Engagement state.

In the Engagement state the filters, context, action and LTM modules are involved.
The mission here is to retrieve from LTM a set of plausible actions to continue the story.
As in the Image interpretation problem, the key condition in this step is that the action
selected must change the state of affairs of the context. Once again the preconditions in
this step are not considered when the action selection is made. Those will be considered
in the Reflective state. Figure 6 shows a Previous Story file used in MEXICA.

The file includes characters, actions (aggressions, deaths, fights, cures...), scene
movement and feelings (hate, love, jealousy...). The selection from the set of actions

78 R. Garcı́a et al.

Fig. 6. Previous story file

retrieved is done based on the filter parameters. For example, an action can be dis-
carded because it has been used more than twice in the actual story or because it does
not modify the context. Next, the ControlFlow changes to the Reflection state. Here the
actions selected during Engagement are checked according to constraints. Also, precon-
ditions and the continuity of the history are verified. In Engagement the context, action,
LTM and constraints modules are active.

5 Discussion

From the selected examples a set of possible actions to be undertaken during the process
of carrying out the goal can be abstracted, and corresponding sets of preconditions
and postconditions can be identified for each action in that set. This allows all three
problems to be represented within the general schema that the model requires, being
the actions the basic units of representation in the model.

For any particular implementation built using the proposed framework, the search
space of possible solutions must be susceptible of being represented as a graph in which
the nodes correspond to actions and the edges establish relationships of precondition
and postcondition fulfilment between the actions. Such a graph can be seen as a tree
like the one shown in Figure 7.

The set of possible complete solutions would then be represented by all possible
paths from the root of the tree to one of its leaves. The image captures the fact that
in many cases, the specification of the problem already contains explicitly a partial
description of the solution - the partial image provided as input in the case of image
interpretation; and the initial action, the initial scene and the number of characters in
the case of MEXICA. The task of solving the problem corresponds to identifying the
missing fragments that will turn this partial description of the solution into a complete
solution. In the image, circles bounded by a full line indicate nodes of the solution
already described explicitly in the specification of the problem, and circles bounded by
a dotted line correspond to actions that must be identified by the system. As example,

A Framework for the E-R Computational Creativity Model 79

Fig. 7. Graph (tree) structure

a possible solution for a given problem may be the next sequence: A-B-D-H, but at the
very beginning there is no idea of a potential solution just the letter A. Later, thinking
about the problem, an analogy can be found with some other problem in the past and
remembering the steps done for solving some specific problem in the past a clue can
be found for solving the current problem. The first decision to be taken in the problem
example represented in Figure 7 would correspond to identifying the node labelled with
letter B as the next correct step towards a complete solution.

At the heart of the Engagement and Reflection creativity model lies a fundamental
idea of the denial of intuition as driving force of human decision making. Under this
point of view, when a person has several possibilities at the time of making a judgment,
his decision is often related to an event in the past. This event need not be remembered
explicitly, as it may be present only subconsciously. If this argument was used as guid-
ing heuristic for a genetic algorithm, the thousands of possible answers that such an
algorithm may give rise to might in fact be limited by the events and solutions that have
proved succesful in the past. This should in no way be interpreted as a slur on genetic
algorithms and the theory of problem solving that underlies them. It is simply a different
way to think about the solution of problems.

6 Conclusions and Future Work

The E-R model is a good candidate for developing a reusable framework because it
was originally intended as an abstract model of generic intellectual abilities of human
beings.

In order to check the utility of the framework two projects are being developed. The
first project is related to the implementation of MEXICA, a system that tells stories
about the early inhabitants of Mexico. The second project is related to the Image In-
terpretation problem for Transurethral ultrasound images of the prostate. Both of them
are being developed an instantiations of the E-R framework. The goal is to achieve op-
erative implementations with less development effort than would have been required
without the framework. The proposed framework contributes to this goal by allowing
developers to focus on the key information such as the actions (preconditions and post-
conditions), filters and constraints.

In addition, when the use of the framework is reliable and efficient, the resulting
ease of use may lead to wider adoption of the model and to more basic research on its
theoretical underpinnings.

80 R. Garcı́a et al.

In spite of the abstract nature of the Engagement and Reflection model, and the
efforts that have been made to make the framework as reusable as possible by the use of
software engineering techniques, the scope of a framework is limited and not all kind of
problems can be covered. However, it must be said that in general terms, the framework
presented in this paper represents two advantages: it may make implementations of the
Engagement and Reflection approach to problem solving faster, and it may serve to
extend the use of the model.

References

1. Perez y Perez, R.: A Computer Model of Creativity in Writing. PhD thesis, University of
Sussex (1999)

2. Johnson, R., Foote, B.: Designing reusable classes. Journal of object-Oriented Programming
1 (1988) 22–35

3. Johnson, R., Roberts., D.: Evolving frameworks: a pattern language for developing object-
oriented frameworks. In: Proceedings of the 3rd Conference on Pattern Languages and Pro-
gramming, Montecillo, Illinois. (1996)

4. Tracz, W.: In software reuse: Emerging technology. IEEE Computer Society Press (1988)
176–189

5. Acosta Villaseñor, E.: Aplicacion de un modelo en computadora del proceso creativo a la
solucion de problemas en geometria. PhD thesis, Universidad Nacional Autonoma de Mexico
(2005)

6. Cootes, T., Taylor, C., Cooper, D., Graham, J.: Active shape models-their training and appli-
cation. Computer Vision and Image Understanding 61 (1995) 38–59

7. Cosio, F., Davies, B.: Automated prostate recognition: a key process for clinically effec-
tive robotic prostatectomy. Medical and Biological Engineering and Computing 37 (1999)
236–243

8. Garcia, C., Hervas, R., Gervas, P.: Una arquitectura software para el desarrollo de aplicaciones
de generación de lenguaje natural. Sociedad Española para el Procesamiento del Lenguaje
Natural 33 (2004) 111

9. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley Professional, USA, First Edition (1995)

	Introduction
	Previous Work
	Design Patterns and Frameworks
	Engagement and Reflection

	Framework Design
	General Structure
	E-R Structure

	Two Instantiation Examples
	Image Interpretation
	MEXICA

	Discussion
	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

