JADAWeb: A CBR System for Cooking Recipes

Miguel Ballesteros, Rail Martin and Belén Diaz-Agudo

Department of Software Engineering and Artificial Intelligence, Universidad
Complutense de Madrid, Spain.
miballes@fdi.ucm.es, rmb2000@gmail.com, belend@sip.ucm.es

Abstract. JaDaWeb has been developed to participate in the 3rd Com-
puter Cooking Contest 2010. The system has been developed over the
system JaDaCook 2.0 that participated in CCC-09. As the main nov-
elties JaDaWeb includes a Web based natural language interface with
parsing of the input data, a fuzzy similarity function and Wordnet rea-
soning to identify and include new ingredients in the ontology. In this
paper we present a brief review of the technical characteristics of the sys-
tem, and some experimental results comparing JADAWeb with Cookiis,
the winner system of the CCC-09. The online system is accesible via
http://supergaia.fdi.ucm.es:8810/CCCWeb

1 Introduction

In this paper we describe JADAWeb, a CBR system based on JADACook][1,
2] that suggests recipes using as input a set of ingredients to include and to
avoid, and some optional dietary and cooking restrictions. JADAWeb retrieves
a recipe from the system case base and includes the capability of adapting it
by substituting its ingredients by other similar ingredients that appear in the
user query. The system uses a fuzzy similarity function to determine if two
ingredients can be swapped in the recipe. JADAWeb has been implemented
using the jJCOLIBRI framework [3] and its facilities to design CBR systems.

JADAWeb has a Web interface built using JSP [4] technology where the
input of data is a single character string on natural language in English. We have
included an algorithm to detect the negation in a sentence, so the system is able
to infer which ingredients the user wants to include and to avoid. The algorithm is
based on multilingual dependency parsing[5]. JADAWeb also includes a number
of substantial improvements in the decision of which nouns identified in the
query are ingredients and which are not. JADACook only checks if the noun
appears in the ingredient ontology. However, JADAWeb also searches the noun
in Wordnet[6] to determine if the noun is an ingredient or not. If an ingredient is
identified in the query and it was not defined in the system ontology, JADAWeb
suggests the area of the ontology is better to classify the new ingredient.

After retrieval, JADAWeb suggestions are ordered by similarity and also
according with the characteristics of the season. Hotter meals, like a soup, will
be presented before in winter, and fresh meals, like salad, will be presented before
if the query is in summer. The information that JADAWeb uses to make this

179

decision is the presence, or not, of some important words that are present in
each recipe, like ‘hot’, ‘oven’, or ‘fresh’.

This paper is organized as follows: Section 2 describes the web-based graph-
ical user interface and the parsing of the input data. In Section 3 we define how
the acquisition of knowledge works. Section 4 describes the case-based reasoning
process, focusing on the similarity function. Section 5 describes a set of examples
tested in the system. We have compared JADAWED results with the CookIIS
system[7] results. Finally, Section 6 shows the conclusions and suggests some
lines of future work.

2 Web-Based Graphical User Interface

The web interface allows the user writing a natural language sentence with the
recipe requirements (see Figure 1). The following is an example of a query where
the user explains what (s)he wants: "I want to eat some fruits, like apple, but I
don’t like kiwi”. The system connects to the dependency text parser to obtain
the information contained in this query. It extracts the list of ingredients to
include and to avoid in the recipe.

@ v e & |[] http:/Mocalhost:8080/CCC2010/index.jsp v | Qv

£ Mas visitados~ @ Getting Started [Latest Headlines~

Computer Cooking Contest
JADAWeDb

> e

‘What do you want to eat?

Query example: 1 want to cat rice, saffron, shrimps, crab, squid but I don't like sugar
Diet type any v || Cuisine type any v || Dish type any ™
Aceptar

RU—

Fig. 1. JADAWeb Web-Based Graphical User Interface

The system infers the lists of ingredients from the query text and shows the
result of the parser. The user also can express if he/she wants to choose some
dietary practices, or type of cuisine using a form type of interface.

2.1 Textual Parsing of the Input

In this version of JADAWeb the textual input query must be a complete and
correct sentence in English. The user query might include the ingredients to in-
clude and to avoid in the recipe. We have implemented an algorithm to detect
the negation on sentences by using dependency parsing[5]. Dependency parsing

180

is an important area of research related with artificial intelligence, computational
linguistics and machine learning. We have used a dependency parser called Mini-
par([8] that is limited to English, but it would be possible to use another parsers
like Maltparser [9] which allows multilingual dependency parsing. Minipar has
an API implemented in C language. Given a plain text sentence, Minipar returns
a dependency tree (see Figure 4). Using a wrapper! for JAVA we have studied
the information given by the parser. Given the tree with the dependency analy-
sis we have implemented an algorithm that detects the attachment of each noun
and those who share the same branch of a negation are marked as candidates
for unwanted ingredients. All other nouns are marked as wanted ingredients.

The evaluation results show that MINIPAR is able to cover about 79 %
of the dependency relationships in the SUSANNE corpus[10] with about 89 %
precision[8] for English parsing, so we have a small quantity of errors, but it does
not mean that our algorithm committed 10% of errors because is possible that
the errors make by Minipar are not important for our purposes.

Fig. 2. Dependency tree

Figure 2 shows the information that the Minipar parser returns for the fol-
lowing sentence: ‘I want rice but I don’t want onions’. Using this information
our algorithm builds a structured query that is compared to the recipes in the
case base. Although we have found a few labeling errors from the dependency
parser, the results obtained by the algorithm are quite reliable in general.

3 Knowledge acquisition

JADAWeb reasons using two main knowledge sources: the recipe base provided
by the contest organization, and the ontology that has been built incremen-
tally and collaboratively from the first versions of JADACook. The ontology is
conceptualized and formalized in the OWL language?.

! http://nlp.shef.ac.uk/result /software.html
2 http://www.w3.org/2004/OWL

181

As a novelty, JADAWeb uses Wordnet[6] to let the user include ingredients
that are not previously integrated in the ontology. The textual parsing of the
input query searches in Wordnet to decide if a not identified noun in the query
is an ingredient or not.

3.1 Ontology

JADAWebD reasons with an ontology that formalizes the cooking domain knowl-
edge. The ontology organizes ingredients in categories. In the first level there are
ingredients of animal origin grouped in some subsets: meat, fish, milk, cheese and
eggs. There are also, ingredients of plant origin grouped in subsets like cereals,
fruits, and vegetables. And finally, there are other specific families of ingredients
like sweets, drinks, or basis ingredients like oil or salt.

The ontology in its current state is very extensive and complete, it has 255
classes, 202 of them are ingredients. Although we made little changes to make
easier the search and the equality between concept names because Wordnet has
different terms than our previous ontology. For example, we changed ‘AnimalO-
rigin’ and ‘PlantOrigin’ for ‘animal’ and ‘plant’.

3.2 Ingredient treatment using Wordnet

Despite the richness of the ontology and the wide range of definitions in the
cooking domain, we have implemented a system to detect new ingredients in
the input by searching the nouns in the lexical database Wordnet. Wordnet
is a lexical database in English, developed at Princeton University under the
direction of George A. Miller. This lexical database allows searching a concept
to get the definition, synonyms and antonyms, among other things.

For every noun in the query that is also in Wordnet, is a candidate to be
an ingredient, the system checks if it is already included the ontology. If the
ingredient is not in the ontology, we try to automatically include and classify it
in the ontology. Using WordNet the application checks whether the definition of
that noun is feasible to belong to any of the categories present in the ontology,
if it is, JADAWeb adds it to the system memory, if the system cannot select a
unique branch, it asks the user to select the concept to allocate the ingredient.

3.3 Algorithm definition

JADAWeb includes the capability of classifying a new ingredient in the ontology
using the information from Wordnet.

Our algorithm first searches an ingredient in the ontology using its name and
also using all the synonyms that Wordnet gives for this concept in the same
synset. If any of the synonyms belongs to the ontology, the search is done. If
not, the system looks for the best node to attach the ingredient.

The parser returns two lists of ingredients. A first list with the ingredients
that the user wants to use. And a second list with the ingredients that the user

182

wants to avoid. The ontology update algorithm proceeds as follows: it takes each
element of those lists and checks if the item is already included in the ontology.
If the item or any of those synonyms are registered then the algorithm is done;
if the ingredient does not appear then the system searches the best node to put
the new ingrediente, but if the best node is not found, the user guides the system
to include the ingredient in the ontology. A branch is defined as the part of the
tree whose items have a predecessor or successor relationship to each other. A
child is the successor of his parent, grandparents ... and the parent predecessor
of children, grandchildren (see Figure 3). To decide the best branch to introduce
an ingredient in the ontology, the system uses the word definition in Wordnet.
As only nouns are feasible to be ingredients, the system discards the other parts
of speech.

Ingrediente

NoFish

Fig. 3. Fragment of the ontology using by JadaWeb, using two examples of branches
within the tree.

All the nouns in the text of the candidate ingredient definition are searched
in the ontology.

If every noun in the definition appears in the same branch, then a candidate
predecessor to allocate the new ingredient would be the lowest item of the branch
that is not a leaf. If it is a leaf, the new ingredient will be attached to the
predecessor of the leaf.

If the definition includes words that are in different branches, each branch is
checked. The system will select the branch which has more nouns of the defini-
tions of the new ingredient. If two or more branches have the same number of
ingredients, the item would have a number of potential predecessor (remember
that the system is searching for the best predecessor to hang the new ingredi-
ent). This is the only case in which both predecessors are returned to the user.
The remaining cases, we obtain a unique solution of the problem, although not
necessarily the best.

In this way, the system puts the ingredient as a child of a node according
its definition and synonyms. Example: We have tested the algorithm with Shark
(the parent the system recomends is fish), saffron (the parents the system re-
comends ar flower and citrus), yeast (cruciferous) and others, and we obtain a
very satisfactory result in an 85 % of the new ingredients included.

183

3.4 Cases

In this new version of the system we have used the case base that is provided
by the organizers of the CCC-10, which is the same than for the CCC-09. The
recipe cases are organized in an XML file that is processed using SAX and DOM
to extract the information to load it in the system memory.

3.5 Non wanted ingredients treatment

Previous versions of JADACook only remove the ingredients that the user does
not want. JADAWeb includes a new algorithm for removing the ingredients that
shares the same branch in the tree with the non wanted ingredients. This option
is good when the user is not very specific. However, if the user is very specific,
or (s)he does not want a special ingredient, our algorithm could remove other
ingredients that the user might want. For example, if the user specifies (s)he
does not want sardine, our system will remove the term sardine and other kind
of similar fishes like anchovies or herring.

4 Case-Based reasoning process

4.1 JadaCook2

JADAWeD inherits the similarity function of JADACook2[2], and adds some
functionality to it. The original similarity function of JADACook2 works as fol-
lows: first, the system takes the ingredients for the wish list of the user, and it
searches for recipes that contain these ingredients. If a recipe contains an ingre-
dient it increases by 1.0 the similarity value. The similarity value is normalized
by the number of ingredients in the query.

During adaptation JadaCook2 does not reject an ingredient when it is not
in the recipe. When it happens, the system searches for ingredients that share
the same branch of the original ingredient in the ontology, if it is feasible the
algorithm increase by 0.8 the similarity value of this recipe. JadaCook2 searches
in all recipes contained by the case base. Finally, the system gets a list of recipes
with the information of how similar is each one in according to the ingredients
introduced by the user.

The user can also specify in the query the type of meal (s)he wants, the type
of diet, the type of cuisine and if (s)he wants some dietary practices. The system
adds some ingredients if the user wants a specific type of meal, i.e. if the user
selects a chinese meal the system will add some ingredients like rice, bamboo,
carrot, ,ginger, chicken, duck, pig, pork or soy sauce.

4.2 JADAWeb

JADAWeb includes new features. The first one is the ability to look for ingredi-
ents to adapt not only among the siblings, but also going up in the hierarchy.
The similarity function has the same criteria as the degree of consanguinity of

184

two people. Two siblings have a similarity value of 0.6, because both are descen-
dent of the same parents. Therefore, a rise of level, subtract 0.4 of similarity.
For two cousins, subtract 0.8: 0.4 because of the rise to the parent and other 0.4
because of the climb to the grandparent. Going down in the level, not penalize.
Thus, another example: the children of a sibling of an ingredient have the same
similarity as the sibling (0.6), the similarity of a cousin’s children are the same
as the cousin and also the same as any of the grandfather’s descendants (which
do not fall for the same branch of the one that is being compared) which is 0.2 in
this case. In this way, you can use other similar ingredients. The number of levels
can be parameterized and the default value is 2, i.e, the system only searches
among siblings and their descendants.

Table 1. Some examples of the fuzzy table.

Ingredient Origin|Ingredient targez|Value
Rice Macaroon 0.4
Stock Water 0.9
Stock Bouillon cubes 0.9
Milk Cream 0.6
Milk Water 0.6

Another novelty in JadaWeb is a table of similarity between fuzzy ingredients.
It is a table with specific values (fuzzy) that gives meaning to say that rice is
replaceable by macaroni with a value of 0.4 to add to the similarity function.
All these pairs of ingredients are defined in an XML file which indicates what
ingredients are similar and the associated fuzzy value. The fuzzy table is not only
used to replace pairs of ingredients. The system also can decide replacing one
ingredient by a group of similar ingredients: stock instead of water and bouillon
cubes with a similarity of 0.9, milk instead of water and cream in a similarity
value of 0.6.

4.3 Measure evaluation of the similarity function.

We have proposed the following experiment as a measure for evaluating the
similarity function of the system.

We made a survey with a set of people(12), each member tested the system
with 5 JADAWeb queries. Each user has introduced his/her a query in natural
language in English and we gave them the choice of which level they want. The
tests were carried out with the three levels of adaptation of ingredients as shown
in Section 4.2. After the CBR process the user evaluates the system results telling
us if the output of the system is satisfactory for him/her, both the recipes and
the order. Table 2 shows the results of the survey.

185

Table 2. Results obtained from the measure of evaluation

Similarity level|Satisfied user|Substitutions
1 90.0% 5.0%
2 70.0% 10.0%
3 40.0% 30.0%

If the similarity level increases then the number of substitutions also in-
creases. With a similarity level that allows only adaptation between ingredients
that share the same branch (similarity level = 1), the satisfaction with the given
recipe is very high. However, the result is worse when we use higher levels. This
is because people do not expect those adapted elements. In various dishes (e.g.,
replacing the lemon with bread), the result is quite concerned, but we could see
that a higher-level change (similarity level > 2) makes the user obtain another
recipe recommended that he or she could not expect it. With a deeperd ontology,
higher level adjustments would score much more satisfactory results. The result
of 70 % for level 2 is good, but the 40 % of level 3 is very low.

5 Results and examples

In this section we show a list of examples of the JADAWeb system. For each
query we describe the recipe proposed by the system in the first place. However,
for each query the system returns five suggestions ordered by the similarity value.

First Experiment In this experiment we have introduced the list of ingredi-
ents for a typical Spanish recipe: paella. We have not specified any type of diet,
cuisine or dish and there are no dietary practices.

Q1: “I want to eat rice, saffron, shrimps, chicken, crab, squid but I don’t like
sugar”.
Answer: the first answer is Paella (Paella in a Pot) that contains many of the
ingredients contained in the query.

Second Experiment In this experiment, we write a query to obtain any type
of pizza with ham, tomato and cheese, and the pizza must not contain onion.
We do not specify any type of diet or type of cuisine, but we introduce a type of
dish (pizza). Although the term “pizza” is written in the main query in natural
language, the system will recognize it as a type of dish.

Q2: “I like pizza with ham, cheese and tomato but I don’t want onions”.

Answer: The system returns some types of pizza (“Pizza Quiche”, “Idiot
Bread Pizza”, “Breakfast Pizza”, “Fruit Pizza” and “Pineapple Cream Cheese

186

Pizza”) which contains ham and cheese or cheese and tomato. We also obtain
some pizzas with ingredients adapted changing tomato with pepper and cheese
with egg, penalizing in 0.4 each one.

Third Experiment In this experiment, we tested the system with a fruit salad.
We do not specify any type of diet or type of cuisine but we specify that the
type of dish is a salad.

Q2: “I like to eat some fruit, like orange, lemon and apple but I don’t want
kiwi”.
Answer: The system returns five salads: first a salad that contains a variety of
fruits: “Portable Salad Dressing” in addition to other salads as “Creamy Waldorf
Salad”.

Comparing JADAWeb with Cookiis As a measure of the behaviour of our
system, we have compared JADAWeb results with last year winner: CookIIS[7].
We show the similarities and differences between the two systems by comparing
the retrieved sets of recipes of both systems.

Test 2 Test 3

Idiot Bread Pizza Creamy Waldorf Salad
Pizza Quiche

JADAV JADAWeb

$dB JOQ WD i

o) OOJOOQ

COOKIIS CooKIIS

Fig. 4. Comparation with test 2.

In the first query there is no coincidence between the retrieved recipes.
JADAWeb retrieves Paella in the first place that is a highlight answer because
we used the paella ingredients to make this query. Cookiis obtains Pad Thai
in the first place. In the other queries we have some coincident results between
the first 5 suggested recipes. In query 2 the two systems retrieve two common
recipes, although in a different order. Idiot Bread Pizza is the first option in
both. Pizza Quiche is the second in JADAWeb, but the fourth in Cookiis. In
query 3 we only have one coincident result: Creamy Waldorf Salad.

187

6 Conclusions

JADAWeb system improves and extends the JADACook2 [2] system. Its web-
based interface gives a broader access to the system and Web accessibility. Ac-
complishing the requirements of AA or AAA W3C makes the system useful for
any person although the person has an inability, i.e blindness.

By using a textual input, we enable a more natural treatment improvement
in the interaction with the final user. We can suggest some future work by
using a system that allows voice recognition that could be connected with our
dependency parser.

JADAWeb extends the possibilities by incorporating a fuzzy table which
allows similarity between two distant elements or types in the ontology, and the
inclusion of various levels in the adaptation algorithm.

It should be noted the great contribution obtained by using WordNet, it
contributes allowing more synonyms for some terms and it extends largely the
knowledge that it has, avoiding the limitation of the use of a finite ontology of
ingredients.

References

1. Herrera, P.J., Iglesias, P., Romero, D., Rubio, 1., Diaz-Agudo, B.: Jadacook: Java
application developed and cooked over ontological knowledge. In Schaaf, M., ed.:
ECCBR Workshops. (2008) 209-218

2. Herrera, P.J., Iglesias, P., Sdnchez, A.M.G., Diaz-Agudo, B.: Jadacook 2: Cooking
over ontological knowledge. In: ICCBR Workshops. Computer Cooking Contest.
(2009)

3. Recio-Garcia, J.A., D’iaz-Agudo, B., Gonzalez-Calero, P.A.: Boosting the perfor-
mance of cbr applications with jeolibri. In: ICTAI, IEEE Computer Society (2009)
276-283

4. Fields, D.K., Kolb, M.A., Bayern, S.: Web Development with Java Server Pages.
Manning Publications Co., Greenwich, CT, USA (2001)

5. Buchholz, S., Marsi, E.: Conll-x shared task on multilingual dependency pars-

ing. In: Proceedings of the 10th Conference on Computational Natural Language
Learning (CoNLL-X). (2006) 149-164
Fellbaum, C., ed.: WordNet: an electronic lexical database. MIT Press (1998)
7. Hanft, A., Thle, N., Bach, K., Newo, R.: Cookiis - competing in the first computer
cooking contest. KI 23 (2009) 30-33

8. Lin, D.: Dependency-based evaluation of minipar. In: Proc. Workshop on the
Evaluation of Parsing Systems. Granada (1998)

9. Nivre, J., Hall, J., Nilsson, J.: Maltparser: A data-driven parser-generator for
dependency parsing. In: In Proc. of LREC-2006. (2006) 2216—2219

10. Sampson, G.: (Briefly noted english for the computer: The susanne corpus and

analytic scheme)

o

188

