
Toward Vignette-Based Story Generation for Drama
Management Systems

Mark O. Riedl
Institute for Creative Technologies
University of Southern California
Marina Del Rey, California, USA

riedl@ict.usc.edu

Carlos León
Depto. de Ingeniería del Software e Inteligencia Artificial

Universidad Complutense de Madrid
Madrid, Spain

cleon@fdi.ucm.es

ABSTRACT
Drama management is a technique by which a virtual world and
computer-controlled characters within the virtual world are
manipulated in order to bring about a dramatic experience for the
human participant. Generative drama management systems use
artificial intelligence to dynamically generate new story content in
order to adapt to the participant. Story generation poses many
challenges, one of which is ensuring that story content that is
generated is good. In the absence of computational models of
story aesthetics, we present an approach to story generation that
makes use a library of vignettes – short narrative segments – that
are presupposed to be “good.” We introduce a story planning
algorithm inspired by case-based reasoning that incorporates
vignettes into the story being generated. The story planning
algorithm requires that vignettes be in the appropriate domain.
We further describe an approach for automatically translating
vignettes from one domain to another, using analogical reasoning.

1. INTRODUCTION
An interactive story is an approach to interactive entertainment in
which a system attempts to tell a story to an interactive
participant, such that the user is afforded the opportunity to make
decisions that directly affect the direction and/or outcome of the
story. The goal of an interactive story system is to balance
seemingly competing requirements: plot coherence and perceived
user self-agency [17]. Plot coherence is the idea that the events
that occur in a narrative have meaning and relevance to each other
and to the outcome. Perceived user self-agency is the idea that the
user, while immersed in a virtual world, perceives his or herself to
be capable of making meaningful decisions.

One approach to interactive story is to use drama management. A
drama manager (first introduced by [7]) is an agent that attempts
to coerce a virtual world so that a player’s interactive experience
to conform to some pre-existing dramatic aesthetic. In the
absence of a computational aesthetic, many drama management
systems rely on a branching story [17] or plot graph [12, 18, 20,
24]. A branching story is a story-like artifact that incorporates
decision-point at which an interactive participant can make
choices and receive alternative story elements. A plot graph is a
data structure that defines a set of partially ordered story elements
that are available for the drama manager to choose to present to
the interactive participant. One of the noted limitations of drama
management is the exponential complexity of authoring branching
stories [17]. That is, for every decision-point in a branching story,
the amount of story content that must be authored is multiplied by
b, where b is the branching factor.

An approach to drama management that may mitigate the
authoring complexity is generative drama management (or
generative experience management [15] for non-dramatic
contexts). The generative drama management approach to
interactive story suggests that if authoring branching stories is
intractable for human authors then a computer system can
generate story content in response to the actions and decisions of
an interactive participant. The goal is to have the participant
experience being part of an unfolding story. As the participant
exerts his or her self-agency and deviates from the original story,
the drama manager invokes an automated story generation system
to adapt, modify, or re-generate story content. Through this
technique the participant’s actions and decisions are
accommodated while the system simultaneously maintains a
coherent narrative experience (according to some pre-existing
aesthetic or set of attributes). Computers are very useful for
performing recursive and repetitive tasks. Generative drama
management systems include [1], [15], and [26].

In this paper we describe an approach to story generation that uses
a combination of planning and case-based reasoning-like
technologies to generate stories. This approach to story
generation can be used for plan-based generative drama
management systems such as those described in [15] and [26]. In
Section 2 we discuss how knowledge-intensive planning
techniques can be used to mitigate the lack of computational
models of story aesthetics. We introduce a vignette-based
planning algorithm inspired by case-based reasoning. The
vignette-based planning approach, however, requires that
vignettes have relevance to the characters and setting of the new
story being generated. In Section 3 we describe a technique for
transforming vignettes so as to be useful in the generation of new
stories. In Section 4, we provide a brief discussion of related
work. In Section 5, we present future work and conclusions.

2. COMPUTATIONAL AESTHETICS FOR
STORY GENERATION
Generative drama managers rely on a story generation system to
create, either a priori or in real time, the different possible story
branches that can define a participant’s experience in a virtual
world. There are many approaches to story generation (e.g., [5, 9,
10, 13, 16, 22]). We favor a plan-based approach to story
generation in the support of interactive story systems. Story
generation is a hard problem that is not yet completely solved.
Despite recent research in plan-based narrative generation (c.f.,
[14, 16]), narrative generation research remains hampered by the
lack of a computational aesthetic that can be used by a generation
system to evaluate the goodness/badness of a generated narrative
(The problem of defining computational aesthetics may be more

challenging than the problem of story generation [14]). Heuristic
functions, both handcrafted and learned, have been investigated as
means to control a drama manager’s real-time decision-making
(c.f., [12, 18, 20, 24]). However, very different heuristics are
required for story generation.

One way to circumvent the lack of aesthetics and heuristics is to
rely on previous knowledge. A “knowledge intensive” approach
[5] is to story generation is to use the fact that stories are not
written in vacuums. That there are large amounts of knowledge
about previously authored stories – some of which are known to
be “good” – that may have relevance to new stories to be
generated. The idea that one can learn from previous experience
is the basis tenant of case-based reasoning

We assume the existence of a knowledgebase populated with
vignettes – short segments of story – that represent “good”
examples of common situations that occur in stories. For
example, the knowledgebase would contain one or more specific
instances of bank robberies, betrayals, cons, etc. It is important to
note that the knowledgebase would include specific examples of
these situations instead of general templates. The implication of
the existence of this knowledgebase for story generation is that the
story generator does not need to “reinvent the wheel,” and thus
does not need enough specialized knowledge to be able to create
specialized narrative situations. Instead, a story generator can use
the knowledgebase to splice in an example of an existing bank
robbery that is known to be “good.” There are many challenges
that need to be addressed in order to achieve this ability in story
generation of which we will discuss one: the transfer of vignettes
from one domain to another to support vignette reuse in story
generation.

2.1 Near and Far Transfer
Case-based reasoning typically involves some or all of the
following stages:

 Retrieve – A process of retrieving one or more cases that
solve problems similar to the current one.

 Reuse – A process of using (or adapting) a retrieved case in
order to satisfy the new problem.

 Revise – A process of testing the solution to the new
problem and repairing it, if necessary.

 Retain – A process of storing the new solution in order to be
useful for future problem solving.

Further discussion of case-based reasoning is beyond the scope of
this paper.

We define near transfer as the retrieval and reuse of a vignette
that is already in the domain of the new story. For example, if the
new story is about the characters Butch Cassidy and the Sundance
Kid (American legendary Western outlaws) and there is a vignette
that describes a bank robbery that was performed by Butch
Cassidy and the Sundance Kid, then reuse is relatively trivial.
Some revision may still be necessary to fit the vignette into the
new story seamlessly due to particulars. If the vignette is about
other characters but of the same roles, then near transfer still
applies because reuse may simply involve adapting the vignette
by substituting names of characters playing the roles.

We define far transfer as the retrieval and reuse of a vignette that
is in a domain other than that in which the new story being
generated is set. For example, if the new story is about 1920’s
American gangsters in Chicago and the applicable vignette is the

same Western bank robbery from before, then the vignette must
be adapted to fit the new domain.

The following definitions will be used throughout the remainder
of the paper.

A domain D = <S, Λ> is a tuple such that S is a description of the
state of a world and Λ is the set of all possible operations that can
change the world.

Unlike the STRIPS and ADL representations of plan operators,
we assume that Λ is the set of all ground operators, meaning the
operators do not reference variables. The set of ground operators
can be derived from STRIPS and ADL representations by
substituting all valid combinations of ground symbols for all
variables in all operator definitions. The use of ground operators
is a necessity our vignette transformation algorithm (described in
Section 3) and is merely a representational convenience that
otherwise does not change how planners work in general.

A narrative plan p = <I, A, O> is a tuple such that I is a
description of the initial state, A is a set of ground operators –
called actions – and O is a set of temporal ordering constraints of
the form a1 < a2 where a1,a2 ∈ A and a1 necessarily precedes a2 in
the story.

A narrative plan p = <I, A, O> is said to be of domain
D = <S, Λ> if ai ∈ Λ for all ai ∈ A and I ⊆ S. Vignettes in the
knowledgebase are assumed to be instances of story plans.
Vignettes can be represented as incomplete plans, meaning that
the plan is not sound. For example, a bank robbery vignette is not
necessarily a complete story and cannot stand alone without
actions that establish some of the conditions necessary for the
vignette actions to occur.

A minimal vignette is a vignette (and thus represented as a story
plan structure) such that the removal of any one action causes the
vignette to no longer be considered a “good” example of the
narrative situation it is intended to represent. We assume that the
knowledgebase is populated to minimal vignettes.

2.2 Planning with Vignettes
Partial order planners and their kin have been used in plan-based
story generation and plan-based interactive story systems (e.g.,
[1], [15], and [26]). The partial order planning algorithms we
work with generate plans through a backward-chaining process of
flaw revision. An open condition flaw exists when an action in
the plan (or the goal state) has a precondition that is not
established by a preceding action or the initial state. Partial order
planners can repair this flaw by choosing one of the following
repair strategies:

(i) Selecting an existing action in the plan that has an effect that
unifies with the precondition in question.

(ii) Selecting and instantiating an operator from the domain
operator library that has an effect that unifies with the
precondition in question.

Our planning algorithm, the Vignette-Based Partial Order Causal
Link (VB-POCL) planner, is a modification of standard partial
order planners to take advantage of the existence of a
knowledgebase of vignettes. The VB-POCL planning algorithm
is similar to other case-based planners such as [2] and [4]. VB-
POCL, like other case-based planners adds a third strategy for
repairing open condition flaws:

(iii) Retrieve and reuse a case that has an action with an effect
that unifies with the precondition in question.

The VB-POCL strategy for retrieving and reusing a case works as
follows. Given an action in the plan that has an unsatisfied
precondition VB-POCL non-deterministically chooses one of the
three above strategies. Strategies (i) and (ii) are performed in the
standard way (c.f., [23]). If strategy (iii) is selected, VB-POCL
creates a new flaw, called a fit flaw. This flaw is satisfied only
when all the actions in the retrieved vignette have been
instantiated in the plan. Repairing a fit flaw is a process of
selecting an action from the retrieved vignette and adding it to the
new plan (or selecting an existing action in the plan that is
identical to the selected action to avoid unnecessary action
repetition). It may take several iterations of the planning
algorithm to completely repair a fit flaw. This process may
additionally lead to the creation of new open condition flaws that
in turn are repaired through conventional planning (strategies i
and ii) or by retrieving new vignettes (strategy iii). One of the
interesting properties of case-based planning algorithms such as
this is that they can operate when there are no applicable vignettes
available; the algorithm can fall back on conventional planning.
If applicable vignettes are available, plan-space search control
algorithms are required to prevent a potential explosion of open
conditions. If a vignette is retrieved, temporal and causal
reasoning ensures that that vignette’s actions are fit into the new
plan at the appropriate place so as to preserve plan soundness.

VB-POCL relies on certain assumptions. First VB-POCL
assumes that vignettes are minimal. VB-POCL doesn’t stop
refitting a vignette until all actions in the vignette are present in
the new plan; the implication of this assumption is that discarding
any one action, even if strictly extraneous from a causal
perspective, will ruin the intended impact of the vignette. Second,
VB-POCL assumes that vignettes in the library are in the domain
of the story being generated. The implication of this assumption
is that the planner does not need to deliberate about the tradeoff
between the cost of retrieval and reuse (which is otherwise very
high). VB-POCL non-deterministically chooses between flaw
repair strategies (i and ii) and (iii), meaning that it applies all
strategies to each and every flaw. This is not practical if vignettes
require extensive far transfer adaptation.

The assumption that all vignettes are in the correct domain is
strong and not necessarily always valid. As noted before
examples of narrative situations can come from a wide assortment
of domains. Further, it is desirable to invent new domains in
order to tell new stories. Adding new characters or new operators
to an existing domain necessarily results in a new domain. In the
next section, we describe a technique for using analogy to
transform story plans of one domain into story plans of another
domain. This is part of a pre-processing stage in which all
vignette plans in a vignette library (presumably of numerous and
arbitrary domains) are transformed into vignette plans of a single,
given domain.

3. ANALOGICAL TRANSFORMATION OF
VIGNETTES
In our approach to story planning with vignettes, we require a
library of vignettes in the domain of the new story to be
generated. Since this is an unrealistic restriction, we have created
a pre-processing phase that transforms vignettes in one domain
into new vignettes in a target domain – the domain that the new

story to be generated will be in. To engage in far transfer on
vignettes, one must first find analogies between the source domain
and the target domain. Analogy-finding algorithms such as the
Structure-Mapping Engine (SME) [3] and Connectionist Analogy
Builder (CAB) [8] have been demonstrated to be able to find
analogies in stories (e.g., the “Karla the Hawk” story described in
[3] and [8]) when they exist. Our problem is different: we have
vignettes in a source domain, but no vignettes in the target
domain; we are solving the problem of transforming a vignette in
a source domain into a new vignette in a target domain.

CAB [8] is an implementation of a cognitive model of analogy
that finds correspondences between concepts. Concepts are
represented as nodes in a directed graph such that concepts that
are related in some way are adjacent. Given two graphs, CAB
produces a mapping with the analogies it has found between
nodes. In the next section we show how we use CAB to transform
a vignette in a source domain into a new vignette in a target
domain.

3.1 The Vignette Transformation Algorithm
Using CAB for computing the analogies, we have developed an
algorithm that receives, as input, a vignette in the source domain
and information about the target domain, and creates, as output, a
new vignette, analogous to the first one, in the target domain.
That is, we perform far transfer on all vignettes in a library.

We define a plan operator as a tuple <h, P, E>, where:

 h is the head of the action, defining its name and its
arguments. For example, for the action take(prince, sword),
we have the name take, and the ground arguments prince and
sword, meaning that the prince took the sword.

 P is the set of ground preconditions, a set of propositions that
define the previous state needed for the action in the story to
be performed.

 E is the set of ground effects, that is, the set of propositions
that are made true when the action is performed. For
example, after the action take(prince, sword) is applied, the
new state would contain the proposition has(prince, sword).

CAB works with graphs, and thus we need to translate STRIPS-
like operators to graphs. To translate an operator into a graph we
create a root node with the head of the action, and children nodes
for the arguments of that action. We add as children to the root
node a preconditions node and an effects node, whose children are
the propositions of the sets P and E, respectively. The graph is
completed by adding propositions from the domain state
information. State information provides context about the ground
symbols that is essential for finding correct analogies between
operators. Some operators have very similar structures (e.g.,
propositions that become negated) and CAB would be unable to
find the difference between any two operators with surface-level
structural similarity without additional information. An example
of graph can be found in Figure 1. Gray nodes represent ground
symbols. The white nodes at the bottom of the figure represent
state information.

With this definition of the operators, the algorithm in Listing 1
finds a mapping for each operator in the source vignette. For
efficiency we only transform the source domain operators that are
actually used in the source vignette. The transformation algorithm
iterates over the set of actions in the source vignette, and, for each
one of them, finds the best possible analogous operator in the

target domain. Then, having the map between that source operator
and the target operator, the algorithm updates the source and
target domain state information, as if the respective operators had
been performed, both in the source state and in the target state.
This is carried out by applying the effects of the operators against
their respective states. With the new source state and target state,
we find the next mapping for the next action in the source
vignette. This process is repeated until every action in the source
vignette has been mapped to an operator in the target domain. It
is important to update state information because, in each step of
the algorithm, we compare operators that are partially defined by
its actual state. Without updating the state, we would be
comparing wrong information.

The find_best algorithm is responsible for finding the best
operator in the target domain for an operator in the source domain.
It is important to note that we have not developed a test for
optimality, and thus there is not an exact way for finding the best
mapping. However, we refer to the “best” or “optimal” operator
when, intuitively, that operator would be chosen by a human.

We implement find_best as a single-elimination competition of
target domain operators. The algorithm is shown in Listing 2.
The routine compares a source operator with a randomly chosen
pair of target operators. Paired target domain operators are
merged into the same directed graph (see Figure 2 for an
example), forcing CAB to choose which nodes make the best
correspondences to nodes in the graph of the single source
operator. This gives us information about correspondences
between nodes in each graph and provides a metric for whether
one target domain operator is relatively more analogical than
another to the source domain operator. CAB maps the head of the
source operator to the head of one of the target operators. The
loser is discarded while the winner is matched against another
randomly chosen target domain operator. This repeats until only
one target domain operator remains. The single-elimination
competition has been shown to be equally effective as algorithms
that compare a source operator to all pairs of target domain
operators while only requiring a linear number of comparisons.

Find_best is only as good as the structure-mapping algorithm, and
CAB relies on the presence of contextual information in the
graphs to make reliable analogies. The example in the next
section shows how the system can find analogies even when

operators have significantly different structures. See Section 5 for
a brief discussion on ways to potentially improve analogy.

Once the algorithm is applied, we have the new vignette in the
target domain. This new element can then be used by the story
planner as a new operator in the working domain, thus using past
information (the old vignette) as a source for new stories (the new
vignette). Note that the resulting vignette is not guaranteed to be
sound, but the planner can revise with conventional planning
strategies after it splices the vignette into a new story plan being
generated.

3.2 Example
We show how the vignette translation works on a very simple
vignette with two operators being transferred to a domain in
which we have three possible operators. In the vignette a prince
takes a sword from the king, and then goes from the castle to the
forest, as follows:

 Take(Prince, Sword, King)
 Go(Prince, Castle, Forest)
Part of the initial state information of the source vignette includes
the fact that the prince and the king are in the castle, the king rules
over the prince, and the king has the sword. An example of the
Take action with some accompanying initial sate information is
shown in Figure 1. In the target domain we have three possible
operators: a soldier steals a gun from the general, the general
leaves the camp, and the soldier leaves the camp:

 Steal(Soldier, Gun, General)
 Leave(Soldier, Camp)
 Leave(General, Camp)
The domain initial state information includes the following facts:
the soldier and the general are at the camp, the general is the
leader of the soldier, and the general has the gun. This set of
operators has been chosen in order to show a simple example, but
in a real translation, we would have a larger set of operators that
includes more actions and all permutations of character
arguments, including, for example, Steal(General, Gun, Soldier).

The vignette translation algorithm executes as follows. The first
action from the source vignette, Take(Prince, Sword, King), is
selected and combined with vignette initial state information. This
operator is first compared with Steal(Soldier, Gun, General) and
Leave(Soldier, Camp), selected randomly from the target domain,
and accompanying domain state information. Figure 2 shows the
graph of the two target domain operators. CAB prefers the

Find-Best (as, Λ t, states, statet)
Given source action as, target domain operators Λt, current source
state states, and current target state statet, find the best target action
in Λt.

Let gs create graph from as and states
Let winner choose and remove random element from Λt
While Λt ≠ ∅ do

Let at choose and remove random element from Λt
Let gt create graph from winner and at and statet
Let mapping CAB(gs, gt)
winner get the winner based on mapping

Return winner

Listing 2. Single-Elimination Competition algorithm.

Transform (ps, Dt)
Given a vignette ps = <I, A, O> in the source domain, and target
domain Dt = <S, Λ> transform ps into an analogous vignette.

Let states = I(ps)
Let statet = S(Dt)
Let pt <S(Dt), ∅, ∅>
Let map ∅
Foreach as ∈ A(ps) do

Let at find_best(as, Λ(Dt), states, statet)
states apply(E(as), states)
statet apply(E(at), statet)
A(pt) A(pt) ∪ {at}
map map ∪ {as ⇔ at}

O(pt) apply(map, O(ps))
Return pt

Listing 1. Vignette transformation algorithm.

correspondence between the head of Take(Prince, Sword, King)
and the head of Steal(Soldier, Gun, General).

The loser of that competition, Leave(Soldier, Camp), is removed
from the list of valid target operators. Next, Take is compared
with the previous winner, Steal, and Leave(General, Camp).
Again, CAB prefers the correspondence of Take to Steal.
Consequently, Steal(Soldier, Gun, General) is determined to be
the best match for Take(Prince, Sword, King). The effects of
Take and Steal are applied to their respective domain states.

Now we repeat the same process for Go(Prince, Castle, Forest)
with the new state information. First, Go is compared to
Steal(Soldier, Gun, General) and Leave(Soldier, Camp).
Interestingly, the graph for the Steal(Soldier, Gun, General)
operator is more similar to the graph for Go because Go and Steal
both have three arguments, one precondition, and two effects of
which one is the negation of one of the preconditions. However,
the way in which the state information in the source graph
correlates to the state information in the target graph causes CAB
to prefer to correlate Go(Prince, Castle, Forest) with
Leave(Soldier, Camp). Next, comparing Leave(Soldier, Camp)
and Leave(General, Camp), CAB prefers to map the head of Go
to the head of Leave(Soldier, Camp). Again, the state information
about the soldier and the general helps CAB distinguish between
the Soldier and the General and thus find the right mapping.
Consequently, Leave(Soldier, Camp) is determined to be the best
match for Go(Prince, Castle, Forest). The final transformed
vignette is as follows:

 Steal(Soldier, Gun, General)
 Leave(Soldier, Camp)

4. RELATED WORK
The goal of this work is to augment the story creation ability of
planner-based generative drama managers. Thus, this work has
relevance to interactive narrative systems such as [1], [15], and
[26]. Of direct relevance is related research on story generation
(e.g., [5, 9, 10, 13, 16, 22]). Minstrel [22], ProtoPropp [5], and
Méxica [13] use forms of case-based reasoning approaches to
reuse of story elements. Minstrel uses specialized transformation
procedures called ATRANS. ProtoPropp uses an ontology-based
approach to CBR with some causal-link reasoning. Méxica is
perhaps the most similar in that it reuses story elements and fills
in missing elements with planning.

Case-based reasoning can also play a role in interactive story
systems other than plot generation. CBR, as a model of individual

agent reasoning, can also be used to select character behavior in
non-drama-management approaches to interactive story [21],
although discussion of this is outside the scope of this paper.
CBR has also been explored in conjunction with player preference
modeling to maximize interestingness when a drama manager can
select among alternative plot points [20].

The planning algorithm presented in this paper is an adaptation of
multiple-reuse case-based planning technologies such as [2] and
[4]. One distinction between VB-POCL and other multiple-reuse
case-based planners is that VB-POCL does not discard
unnecessary actions from cases because of the minimal vignette
assumption. VB-POCL shares many functional attributes with
CBPOP [2]. However, CBPOP deterministically decides whether
to attempt retrieval/reuse for any given flaw under the assumption
that retrieval and reuse is costly and should be avoided whenever
it seems unlikely to be effective. VB-POCL assumes retrieval and
reuse is trivial due to the transformation of the entire vignette
library to the target domain.

It may be possible to use hierarchical task network (HTN)
planners [19] or a decompositional planner such as DPOCL [25]
to achieve similar effects as VB-POCL. However, using HTNs or
other decompositional techniques to generate story requires
reasoning at higher levels of abstraction than the action (or event),
and this introduces potentially rigid top-down structuring of plot
that can limit opportunistic discovery such as in [14, 16].

The vignette transformation algorithm uses analogy to find
mappings between actions in different domains. Analogical
transformation has been used for story generation before. Hervás
et al. [6] uses analogy to map the state of one domain to the state
of another domain to construct informative expository statements
such as “Luke Skywalker was the King Arthur of Jedi Knights.”
Our approach maps operators at which time, as a side effect, state
is also mapped.

5. FUTURE WORK AND CONCLUSIONS
In order to make vignette-based story planning practical, we
enforce the rule that vignettes must be close enough to the new
story’s domain that near transfer is possible and quick. However,
this requires that vignettes undergo far transfer prior to invoking
VB-POCL. This pre-processing stage, described in Section 3, is
slow but only has to be done when a new domain is created. One
interesting conclusion of our work to date is that the vignette
transformation process can work with relatively little extraneous
information. However, more knowledge is better and linking to
WordNet [11] or other sources of ontological information will

Figure 2. Graph of two competing operators, “Soldier
leaves camp” and “Soldier steals gun”.

Figure 1. Graph representation of operator “Prince
takes sword”.

increase the processing speed, provide more accurate results, and
ease authoring of domain knowledge. The technique described in
[6] is complimentary to our own and could contribute to our
vignette transformation process by competently mapping
characters between domains before an attempt at mapping domain
actions is made.

This knowledge-intensive approach to story generation enables us
to use pre-screened vignettes as the building blocks of new
stories. There is no guarantee that a new story made up of
assembled vignettes will be good. However, it may be possible to
annotate vignettes with metadata that can further inform the story
generator about when and how to incorporate vignettes into the
story structure. Future work involves additional algorithms to
reason about when to use vignettes versus other story generation
techniques. Future work is also needed to determine the extent to
which vignette-based story generation can scale.

This work represents a step toward more sophisticated plan-based
story generation, in the absence of computational models of story
aesthetics, by incorporating partial order planning approaches to
story generation with case-based reasoning-like approaches to
story generation. The eventual goal is to develop generative
drama managers and experience managers that are more effective
in adapting to the actions and intentions of interactive participants
by generating better stories.

6. ACKNOWLEDGMENTS
The project or effort described here has been sponsored by the
U.S. Army Research, Development, and Engineering Command
(RDECOM). Statements and opinions expressed do not
necessarily reflect the position or the policy of the United States
Government, and no official endorsement should be inferred.

7. REFERENCES
[1] Barber, H.M. and Kudenko, D. Dynamic Generation of

Dilemma-based Interactive Narratives. In Proc. of the 3rd AI
and Interactive Digital Entertainment Conf. (2007).

[2] Britanik, J. and Marefat, M. CBPOP: A Domain-Independent
Multi-Case Reuse Planner. Computational Intelligence, 20,
2, (2004), 405-443.

[3] Falkenhainer, B., Forbus, K., and Gentner, D. The Structure-
Mapping Engine: Algorithms and Examples. Artificial
Intelligence, 41, (1989), 1-63.

[4] Francis, A.G., and Ram, A. A Domain-Independent
Algorithm for Multi-Plan Adaptation and Merging in Least
Commitment Planners. In Proc. of the AAAI Fall Symposium
on Adaptation of Knowledge Reuse (1995).

[5] Gervás, P., Díaz-Agudo, B., Peinado, F., and Hervás, R.
Story Plot Generation Based on CBR. Journal of Knowledge-
Based Systems, 18, 4-5, (2005), 235-242.

[6] Hervás, R., Pereira, F.C., Gervás, P. and Cardoso, A. Cross-
Domain Analogy in Automated Text Generation. In Proc. of
the 3rd Joint Workshop on Computational Creativity (2006).

[7] Kelso, M., Weyhrauch, P., and Bates, J. Dramatic Presence.
Presence: The Journal of Teleoperators and Virtual
Environments, 2, (1993).

[8] Larkey, L.B. and Love, B.C. CAB: Connectionist Analogy
Builder. Cognitive Science, 27, (2003), 781-794.

[9] Lebowitz, M. Story-Telling as Planning and Learning.
Poetics, 14, (1985), 483-502.

[10] Meehan, J.R. The Metanovel: Writing Stories by Computer.
Ph.D. Thesis, Yale University, New Haven, CT, 1976.

[11] Miller, G.A. Wordnet: A Lexical Database for English.
Communications of the ACM, 38, 11, (1995), 39-41.

[12] Nelson, M., Mateas, M., Roberts, D.L., and Isbell, C.
Declarative Optimization-Based Drama Management in
Interactive Fiction. IEEE Computer Graphics and
Applications, 26, 3, (2006).

[13] Pérez y Pérez, R. and Sharples, M. MEXICA: A Computer
Model of a Cognitive Account of Creative Writing. Journal
of Experimental and Theoretical Artificial Intelligence, 13,
(2001), 119-139.

[14] Riedl, M.O. Narrative Generation: Balancing Plot and
Character. Ph.D. Thesis, North Carolina State University,
Raleigh, NC, 2004.

[15] Riedl, M.O., Stern, A., Dini, D., and Alderman, J. Dynamic
Experience Management in virtual Worlds for Entertainment,
Education, and Training. International Transactions on
Systems Science and Applications (to appear).

[16] Riedl, M.O. and Young, R.M. An Intent-Driven Planner for
Multi-Agent Story Generation. In Proc. of the 3rd Int. Joint
Conf. on Autonomous Agents and Multi Agent Systems
(2004).

[17] Riedl, M.O. and Young, R.M. From Linear Story Generation
to Branching Story Graphs. IEEE Computer Graphics and
Applications, 26, 3, (2006).

[18] Roberts, D.L., Strong, C., and Isbell, C. Using Feature Value
Distributions to Estimate Player Satisfaction Through an
Author’s Eyes. In Proc. of the AAAI Fall Symposium on
Intelligent Narrative Technologies (2007).

[19] Sacerdoti, E.D. A Structure for Plans and Behavior. Elsevier,
1977.

[20] Sharma, M., Ontañón, S., Strong, C., Mehta, M., and Ram,
A. Towards Player Preference Modeling for Drama
Management in Interactive Stories. In Proc. of the 20th Int.
Conf. of the Florida Artificial Intelligence Research Society
(2007).

[21] Swartjes, I. Using Narrative Cases to Author Interactive
Story Content. In Proc. of the 6th Int. Conf. on Entertainment
Computing (2007).

[22] Turner, S. The Creative Process: A Computer Model of
Storytelling. Lawrence Erlbaum Assoc., 1994.

[23] Weld, D. An Introduction to Least Commitment Planning. AI
Magazine, 15, 4, (1994), 27-61.

[24] Weyhrauch, P. Guiding Interactive Fiction. Ph.D. Thesis,
Carnegie Mellon University, Pittsburgh, PA, 1997.

[25] Young, R.M., Pollack, M., and Moore, J. Decomposition and
causality in partial-order planning. In Proc. of the 2nd Int.
Conf. on AI and Planning Systems (1994).

[26] Young, R.M., Riedl, M.O., Branly, M., Jhala, A., Martin,
R.J., and Saretto, C.J. An Architecture for Integrating Plan-
Based Behavior Generation with Interactive Game
Environments. Journal of Game Development, 1, (2004).

