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ABSTRACT 
Drama management is a technique by which a virtual world and 
computer-controlled characters within the virtual world are 
manipulated in order to bring about a dramatic experience for the 
human participant.  Generative drama management systems use 
artificial intelligence to dynamically generate new story content in 
order to adapt to the participant.  Story generation poses many 
challenges, one of which is ensuring that story content that is 
generated is good.  In the absence of computational models of 
story aesthetics, we present an approach to story generation that 
makes use a library of vignettes – short narrative segments – that 
are presupposed to be “good.”  We introduce a story planning 
algorithm inspired by case-based reasoning that incorporates 
vignettes into the story being generated.  The story planning 
algorithm requires that vignettes be in the appropriate domain.  
We further describe an approach for automatically translating 
vignettes from one domain to another, using analogical reasoning. 

1. INTRODUCTION 
An interactive story is an approach to interactive entertainment in 
which a system attempts to tell a story to an interactive 
participant, such that the user is afforded the opportunity to make 
decisions that directly affect the direction and/or outcome of the 
story.  The goal of an interactive story system is to balance 
seemingly competing requirements: plot coherence and perceived 
user self-agency [17].  Plot coherence is the idea that the events 
that occur in a narrative have meaning and relevance to each other 
and to the outcome.  Perceived user self-agency is the idea that the 
user, while immersed in a virtual world, perceives his or herself to 
be capable of making meaningful decisions. 

One approach to interactive story is to use drama management.  A 
drama manager (first introduced by [7]) is an agent that attempts 
to coerce a virtual world so that a player’s interactive experience 
to conform to some pre-existing dramatic aesthetic.  In the 
absence of a computational aesthetic, many drama management 
systems rely on a branching story [17] or plot graph [12, 18, 20, 
24].  A branching story is a story-like artifact that incorporates 
decision-point at which an interactive participant can make 
choices and receive alternative story elements.  A plot graph is a 
data structure that defines a set of partially ordered story elements 
that are available for the drama manager to choose to present to 
the interactive participant.  One of the noted limitations of drama 
management is the exponential complexity of authoring branching 
stories [17].  That is, for every decision-point in a branching story, 
the amount of story content that must be authored is multiplied by 
b, where b is the branching factor. 

An approach to drama management that may mitigate the 
authoring complexity is generative drama management (or 
generative experience management [15] for non-dramatic 
contexts).  The generative drama management approach to 
interactive story suggests that if authoring branching stories is 
intractable for human authors then a computer system can 
generate story content in response to the actions and decisions of 
an interactive participant.  The goal is to have the participant 
experience being part of an unfolding story.  As the participant 
exerts his or her self-agency and deviates from the original story, 
the drama manager invokes an automated story generation system 
to adapt, modify, or re-generate story content.  Through this 
technique the participant’s actions and decisions are 
accommodated while the system simultaneously maintains a 
coherent narrative experience (according to some pre-existing 
aesthetic or set of attributes).  Computers are very useful for 
performing recursive and repetitive tasks.  Generative drama 
management systems include [1], [15], and [26]. 

In this paper we describe an approach to story generation that uses 
a combination of planning and case-based reasoning-like 
technologies to generate stories.  This approach to story 
generation can be used for plan-based generative drama 
management systems such as those described in [15] and [26].  In 
Section 2 we discuss how knowledge-intensive planning 
techniques can be used to mitigate the lack of computational 
models of story aesthetics.  We introduce a vignette-based 
planning algorithm inspired by case-based reasoning.  The 
vignette-based planning approach, however, requires that 
vignettes have relevance to the characters and setting of the new 
story being generated.  In Section 3 we describe a technique for 
transforming vignettes so as to be useful in the generation of new 
stories.  In Section 4, we provide a brief discussion of related 
work.  In Section 5, we present future work and conclusions. 

2. COMPUTATIONAL AESTHETICS FOR 
STORY GENERATION 
Generative drama managers rely on a story generation system to 
create, either a priori or in real time, the different possible story 
branches that can define a participant’s experience in a virtual 
world.  There are many approaches to story generation (e.g., [5, 9, 
10, 13, 16, 22]).  We favor a plan-based approach to story 
generation in the support of interactive story systems.  Story 
generation is a hard problem that is not yet completely solved.  
Despite recent research in plan-based narrative generation (c.f., 
[14, 16]), narrative generation research remains hampered by the 
lack of a computational aesthetic that can be used by a generation 
system to evaluate the goodness/badness of a generated narrative 
(The problem of defining computational aesthetics may be more 



challenging than the problem of story generation [14]).  Heuristic 
functions, both handcrafted and learned, have been investigated as 
means to control a drama manager’s real-time decision-making 
(c.f., [12, 18, 20, 24]).  However, very different heuristics are 
required for story generation. 

One way to circumvent the lack of aesthetics and heuristics is to 
rely on previous knowledge.  A “knowledge intensive” approach 
[5] is to story generation is to use the fact that stories are not 
written in vacuums. That there are large amounts of knowledge 
about previously authored stories – some of which are known to 
be “good” – that may have relevance to new stories to be 
generated.  The idea that one can learn from previous experience 
is the basis tenant of case-based reasoning  

We assume the existence of a knowledgebase populated with 
vignettes – short segments of story – that represent “good” 
examples of common situations that occur in stories.  For 
example, the knowledgebase would contain one or more specific 
instances of bank robberies, betrayals, cons, etc.  It is important to 
note that the knowledgebase would include specific examples of 
these situations instead of general templates.  The implication of 
the existence of this knowledgebase for story generation is that the 
story generator does not need to “reinvent the wheel,” and thus 
does not need enough specialized knowledge to be able to create 
specialized narrative situations.  Instead, a story generator can use 
the knowledgebase to splice in an example of an existing bank 
robbery that is known to be “good.”  There are many challenges 
that need to be addressed in order to achieve this ability in story 
generation of which we will discuss one: the transfer of vignettes 
from one domain to another to support vignette reuse in story 
generation. 

2.1 Near and Far Transfer 
Case-based reasoning typically involves some or all of the 
following stages: 

 Retrieve – A process of retrieving one or more cases that 
solve problems similar to the current one. 

 Reuse – A process of using (or adapting) a retrieved case in 
order to satisfy the new problem. 

 Revise – A process of testing the solution to the new 
problem and repairing it, if necessary. 

 Retain – A process of storing the new solution in order to be 
useful for future problem solving. 

Further discussion of case-based reasoning is beyond the scope of 
this paper. 

We define near transfer as the retrieval and reuse of a vignette 
that is already in the domain of the new story.  For example, if the 
new story is about the characters Butch Cassidy and the Sundance 
Kid (American legendary Western outlaws) and there is a vignette 
that describes a bank robbery that was performed by Butch 
Cassidy and the Sundance Kid, then reuse is relatively trivial.  
Some revision may still be necessary to fit the vignette into the 
new story seamlessly due to particulars.  If the vignette is about 
other characters but of the same roles, then near transfer still 
applies because reuse may simply involve adapting the vignette 
by substituting names of characters playing the roles.   

We define far transfer as the retrieval and reuse of a vignette that 
is in a domain other than that in which the new story being 
generated is set.  For example, if the new story is about 1920’s 
American gangsters in Chicago and the applicable vignette is the 

same Western bank robbery from before, then the vignette must 
be adapted to fit the new domain.   

The following definitions will be used throughout the remainder 
of the paper. 

A domain D = <S, Λ> is a tuple such that S is a description of the 
state of a world and Λ is the set of all possible operations that can 
change the world. 

Unlike the STRIPS and ADL representations of plan operators, 
we assume that Λ is the set of all ground operators, meaning the 
operators do not reference variables.  The set of ground operators 
can be derived from STRIPS and ADL representations by 
substituting all valid combinations of ground symbols for all 
variables in all operator definitions.  The use of ground operators 
is a necessity our vignette transformation algorithm (described in 
Section 3) and is merely a representational convenience that 
otherwise does not change how planners work in general. 

A narrative plan p = <I, A, O> is a tuple such that I is a 
description of the initial state, A is a set of ground operators – 
called actions – and O is a set of temporal ordering constraints of 
the form a1 < a2 where a1,a2 ∈ A and a1 necessarily precedes a2 in 
the story. 

A narrative plan p = <I, A, O> is said to be of domain  
D = <S, Λ> if ai ∈ Λ for all ai ∈ A and I ⊆ S.  Vignettes in the 
knowledgebase are assumed to be instances of story plans.  
Vignettes can be represented as incomplete plans, meaning that 
the plan is not sound.  For example, a bank robbery vignette is not 
necessarily a complete story and cannot stand alone without 
actions that establish some of the conditions necessary for the 
vignette actions to occur. 

A minimal vignette is a vignette (and thus represented as a story 
plan structure) such that the removal of any one action causes the 
vignette to no longer be considered a “good” example of the 
narrative situation it is intended to represent.  We assume that the 
knowledgebase is populated to minimal vignettes. 

2.2 Planning with Vignettes 
Partial order planners and their kin have been used in plan-based 
story generation and plan-based interactive story systems (e.g., 
[1], [15], and [26]).  The partial order planning algorithms we 
work with generate plans through a backward-chaining process of 
flaw revision.  An open condition flaw exists when an action in 
the plan (or the goal state) has a precondition that is not 
established by a preceding action or the initial state.  Partial order 
planners can repair this flaw by choosing one of the following 
repair strategies: 

(i) Selecting an existing action in the plan that has an effect that 
unifies with the precondition in question. 

(ii) Selecting and instantiating an operator from the domain 
operator library that has an effect that unifies with the 
precondition in question. 

Our planning algorithm, the Vignette-Based Partial Order Causal 
Link (VB-POCL) planner, is a modification of standard partial 
order planners to take advantage of the existence of a 
knowledgebase of vignettes.  The VB-POCL planning algorithm 
is similar to other case-based planners such as [2] and [4].  VB-
POCL, like other case-based planners adds a third strategy for 
repairing open condition flaws: 



(iii) Retrieve and reuse a case that has an action with an effect 
that unifies with the precondition in question. 

The VB-POCL strategy for retrieving and reusing a case works as 
follows.  Given an action in the plan that has an unsatisfied 
precondition VB-POCL non-deterministically chooses one of the 
three above strategies.  Strategies (i) and (ii) are performed in the 
standard way (c.f., [23]).  If strategy (iii) is selected, VB-POCL 
creates a new flaw, called a fit flaw.  This flaw is satisfied only 
when all the actions in the retrieved vignette have been 
instantiated in the plan.  Repairing a fit flaw is a process of 
selecting an action from the retrieved vignette and adding it to the 
new plan (or selecting an existing action in the plan that is 
identical to the selected action to avoid unnecessary action 
repetition).  It may take several iterations of the planning 
algorithm to completely repair a fit flaw.  This process may 
additionally lead to the creation of new open condition flaws that 
in turn are repaired through conventional planning (strategies i 
and ii) or by retrieving new vignettes (strategy iii).  One of the 
interesting properties of case-based planning algorithms such as 
this is that they can operate when there are no applicable vignettes 
available; the algorithm can fall back on conventional planning.  
If applicable vignettes are available, plan-space search control 
algorithms are required to prevent a potential explosion of open 
conditions.  If a vignette is retrieved, temporal and causal 
reasoning ensures that that vignette’s actions are fit into the new 
plan at the appropriate place so as to preserve plan soundness.   

VB-POCL relies on certain assumptions.  First VB-POCL 
assumes that vignettes are minimal.  VB-POCL doesn’t stop 
refitting a vignette until all actions in the vignette are present in 
the new plan; the implication of this assumption is that discarding 
any one action, even if strictly extraneous from a causal 
perspective, will ruin the intended impact of the vignette.  Second, 
VB-POCL assumes that vignettes in the library are in the domain 
of the story being generated.  The implication of this assumption 
is that the planner does not need to deliberate about the tradeoff 
between the cost of retrieval and reuse (which is otherwise very 
high). VB-POCL non-deterministically chooses between flaw 
repair strategies (i and ii) and (iii), meaning that it applies all 
strategies to each and every flaw.  This is not practical if vignettes 
require extensive far transfer adaptation.  

The assumption that all vignettes are in the correct domain is 
strong and not necessarily always valid.  As noted before 
examples of narrative situations can come from a wide assortment 
of domains.  Further, it is desirable to invent new domains in 
order to tell new stories.  Adding new characters or new operators 
to an existing domain necessarily results in a new domain.  In the 
next section, we describe a technique for using analogy to 
transform story plans of one domain into story plans of another 
domain.  This is part of a pre-processing stage in which all 
vignette plans in a vignette library (presumably of numerous and 
arbitrary domains) are transformed into vignette plans of a single, 
given domain. 

3. ANALOGICAL TRANSFORMATION OF 
VIGNETTES 
In our approach to story planning with vignettes, we require a 
library of vignettes in the domain of the new story to be 
generated.  Since this is an unrealistic restriction, we have created 
a pre-processing phase that transforms vignettes in one domain 
into new vignettes in a target domain – the domain that the new 

story to be generated will be in.  To engage in far transfer on 
vignettes, one must first find analogies between the source domain 
and the target domain.  Analogy-finding algorithms such as the 
Structure-Mapping Engine (SME) [3] and Connectionist Analogy 
Builder (CAB) [8] have been demonstrated to be able to find 
analogies in stories (e.g., the “Karla the Hawk” story described in 
[3] and [8]) when they exist.  Our problem is different: we have 
vignettes in a source domain, but no vignettes in the target 
domain; we are solving the problem of transforming a vignette in 
a source domain into a new vignette in a target domain.   

CAB [8] is an implementation of a cognitive model of analogy 
that finds correspondences between concepts.  Concepts are 
represented as nodes in a directed graph such that concepts that 
are related in some way are adjacent.  Given two graphs, CAB 
produces a mapping with the analogies it has found between 
nodes. In the next section we show how we use CAB to transform 
a vignette in a source domain into a new vignette in a target 
domain. 

3.1 The Vignette Transformation Algorithm 
Using CAB for computing the analogies, we have developed an 
algorithm that receives, as input, a vignette in the source domain 
and information about the target domain, and creates, as output, a 
new vignette, analogous to the first one, in the target domain.  
That is, we perform far transfer on all vignettes in a library. 

We define a plan operator as a tuple <h, P, E>, where: 

 h is the head of the action, defining its name and its 
arguments. For example, for the action take(prince, sword), 
we have the name take, and the ground arguments prince and 
sword, meaning that the prince took the sword. 

 P is the set of ground preconditions, a set of propositions that 
define the previous state needed for the action in the story to 
be performed.  

 E is the set of ground effects, that is, the set of propositions 
that are made true when the action is performed. For 
example, after the action take(prince, sword) is applied, the 
new state would contain the proposition has(prince, sword). 

CAB works with graphs, and thus we need to translate STRIPS-
like operators to graphs. To translate an operator into a graph we 
create a root node with the head of the action, and children nodes 
for the arguments of that action. We add as children to the root 
node a preconditions node and an effects node, whose children are 
the propositions of the sets P and E, respectively.  The graph is 
completed by adding propositions from the domain state 
information. State information provides context about the ground 
symbols that is essential for finding correct analogies between 
operators.  Some operators have very similar structures (e.g., 
propositions that become negated) and CAB would be unable to 
find the difference between any two operators with surface-level 
structural similarity without additional information. An example 
of graph can be found in Figure 1. Gray nodes represent ground 
symbols.  The white nodes at the bottom of the figure represent 
state information.   

With this definition of the operators, the algorithm in Listing 1 
finds a mapping for each operator in the source vignette. For 
efficiency we only transform the source domain operators that are 
actually used in the source vignette. The transformation algorithm 
iterates over the set of actions in the source vignette, and, for each 
one of them, finds the best possible analogous operator in the 



target domain. Then, having the map between that source operator 
and the target operator, the algorithm updates the source and 
target domain state information, as if the respective operators had 
been performed, both in the source state and in the target state. 
This is carried out by applying the effects of the operators against 
their respective states. With the new source state and target state, 
we find the next mapping for the next action in the source 
vignette. This process is repeated until every action in the source 
vignette has been mapped to an operator in the target domain.  It 
is important to update state information because, in each step of 
the algorithm, we compare operators that are partially defined by 
its actual state. Without updating the state, we would be 
comparing wrong information.  

The find_best algorithm is responsible for finding the best 
operator in the target domain for an operator in the source domain. 
It is important to note that we have not developed a test for 
optimality, and thus there is not an exact way for finding the best 
mapping. However, we refer to the “best” or “optimal” operator 
when, intuitively, that operator would be chosen by a human. 

We implement find_best as a single-elimination competition of 
target domain operators.  The algorithm is shown in Listing 2.  
The routine compares a source operator with a randomly chosen 
pair of target operators.  Paired target domain operators are 
merged into the same directed graph (see Figure 2 for an 
example), forcing CAB to choose which nodes make the best 
correspondences to nodes in the graph of the single source 
operator. This gives us information about correspondences 
between nodes in each graph and provides a metric for whether 
one target domain operator is relatively more analogical than 
another to the source domain operator.  CAB maps the head of the 
source operator to the head of one of the target operators.  The 
loser is discarded while the winner is matched against another 
randomly chosen target domain operator.  This repeats until only 
one target domain operator remains.  The single-elimination 
competition has been shown to be equally effective as algorithms 
that compare a source operator to all pairs of target domain 
operators while only requiring a linear number of comparisons. 

Find_best is only as good as the structure-mapping algorithm, and 
CAB relies on the presence of contextual information in the 
graphs to make reliable analogies.  The example in the next 
section shows how the system can find analogies even when 

operators have significantly different structures.  See Section 5 for 
a brief discussion on ways to potentially improve analogy. 

Once the algorithm is applied, we have the new vignette in the 
target domain. This new element can then be used by the story 
planner as a new operator in the working domain, thus using past 
information (the old vignette) as a source for new stories (the new 
vignette).  Note that the resulting vignette is not guaranteed to be 
sound, but the planner can revise with conventional planning 
strategies after it splices the vignette into a new story plan being 
generated. 

3.2 Example 
We show how the vignette translation works on a very simple 
vignette with two operators being transferred to a domain in 
which we have three possible operators.  In the vignette a prince 
takes a sword from the king, and then goes from the castle to the 
forest, as follows:  

 Take(Prince, Sword, King) 
 Go(Prince, Castle, Forest) 
Part of the initial state information of the source vignette includes 
the fact that the prince and the king are in the castle, the king rules 
over the prince, and the king has the sword.  An example of the 
Take action with some accompanying initial sate information is 
shown in Figure 1. In the target domain we have three possible 
operators: a soldier steals a gun from the general, the general 
leaves the camp, and the soldier leaves the camp: 

 Steal(Soldier, Gun, General) 
 Leave(Soldier, Camp) 
 Leave(General, Camp) 
The domain initial state information includes the following facts: 
the soldier and the general are at the camp, the general is the 
leader of the soldier, and the general has the gun.  This set of 
operators has been chosen in order to show a simple example, but 
in a real translation, we would have a larger set of operators that 
includes more actions and all permutations of character 
arguments, including, for example, Steal(General, Gun, Soldier). 

The vignette translation algorithm executes as follows.  The first 
action from the source vignette, Take(Prince, Sword, King), is 
selected and combined with vignette initial state information. This 
operator is first compared with Steal(Soldier, Gun, General) and 
Leave(Soldier, Camp), selected randomly from the target domain, 
and accompanying domain state information. Figure 2 shows the 
graph of the two target domain operators.  CAB prefers the 

Find-Best (as, Λ t, states, statet) 
Given source action as, target domain operators Λt, current source 
state states, and current target state statet, find the best target action 
in Λt. 
 
Let gs  create graph from as and states 
Let winner  choose and remove random element from Λt 
While Λt ≠ ∅ do 

Let at  choose and remove random element from Λt 
Let gt  create graph from winner and at and statet 
Let mapping  CAB(gs, gt) 
winner  get the winner based on mapping 

Return winner 

Listing 2. Single-Elimination Competition algorithm. 

Transform (ps, Dt) 
Given a vignette ps = <I, A, O> in the source domain, and target 
domain Dt = <S, Λ> transform ps into an analogous vignette. 
 
Let states = I(ps) 
Let statet = S(Dt) 
Let pt  <S(Dt), ∅, ∅> 
Let map  ∅ 
Foreach as ∈ A(ps) do 

Let at  find_best(as, Λ(Dt), states, statet) 
states  apply(E(as), states) 
statet  apply(E(at), statet) 
A(pt)  A(pt) ∪ {at} 
map  map ∪ {as ⇔ at} 

O(pt)  apply(map, O(ps)) 
Return pt 

Listing 1. Vignette transformation algorithm. 



correspondence between the head of Take(Prince, Sword, King) 
and the head of Steal(Soldier, Gun, General).   

The loser of that competition, Leave(Soldier, Camp), is removed 
from the list of valid target operators. Next, Take is compared 
with the previous winner, Steal, and Leave(General, Camp). 
Again, CAB prefers the correspondence of Take to Steal. 
Consequently, Steal(Soldier, Gun, General) is determined to be 
the best match for Take(Prince, Sword, King).  The effects of 
Take and Steal are applied to their respective domain states. 

Now we repeat the same process for Go(Prince, Castle, Forest) 
with the new state information. First, Go is compared to 
Steal(Soldier, Gun, General) and Leave(Soldier, Camp).  
Interestingly, the graph for the Steal(Soldier, Gun, General) 
operator is more similar to the graph for Go because Go and Steal 
both have three arguments, one precondition, and two effects of 
which one is the negation of one of the preconditions. However, 
the way in which the state information in the source graph 
correlates to the state information in the target graph causes CAB 
to prefer to correlate Go(Prince, Castle, Forest) with 
Leave(Soldier, Camp).  Next, comparing Leave(Soldier, Camp) 
and Leave(General, Camp), CAB prefers to map the head of Go 
to the head of Leave(Soldier, Camp). Again, the state information 
about the soldier and the general helps CAB distinguish between 
the Soldier and the General and thus find the right mapping. 
Consequently, Leave(Soldier, Camp) is determined to be the best 
match for Go(Prince, Castle, Forest).  The final transformed 
vignette is as follows: 

 Steal(Soldier, Gun, General) 
 Leave(Soldier, Camp) 

4. RELATED WORK 
The goal of this work is to augment the story creation ability of 
planner-based generative drama managers.  Thus, this work has 
relevance to interactive narrative systems such as [1], [15], and 
[26].  Of direct relevance is related research on story generation 
(e.g., [5, 9, 10, 13, 16, 22]).  Minstrel [22], ProtoPropp [5], and 
Méxica [13] use forms of case-based reasoning approaches to 
reuse of story elements.  Minstrel uses specialized transformation 
procedures called ATRANS.  ProtoPropp uses an ontology-based 
approach to CBR with some causal-link reasoning.  Méxica is 
perhaps the most similar in that it reuses story elements and fills 
in missing elements with planning.  

Case-based reasoning can also play a role in interactive story 
systems other than plot generation.  CBR, as a model of individual 

agent reasoning, can also be used to select character behavior in 
non-drama-management approaches to interactive story [21], 
although discussion of this is outside the scope of this paper.  
CBR has also been explored in conjunction with player preference 
modeling to maximize interestingness when a drama manager can 
select among alternative plot points [20]. 

The planning algorithm presented in this paper is an adaptation of 
multiple-reuse case-based planning technologies such as [2] and 
[4].  One distinction between VB-POCL and other multiple-reuse 
case-based planners is that VB-POCL does not discard 
unnecessary actions from cases because of the minimal vignette 
assumption.  VB-POCL shares many functional attributes with 
CBPOP [2].  However, CBPOP deterministically decides whether 
to attempt retrieval/reuse for any given flaw under the assumption 
that retrieval and reuse is costly and should be avoided whenever 
it seems unlikely to be effective.  VB-POCL assumes retrieval and 
reuse is trivial due to the transformation of the entire vignette 
library to the target domain. 

It may be possible to use hierarchical task network (HTN) 
planners [19] or a decompositional planner such as DPOCL [25] 
to achieve similar effects as VB-POCL.  However, using HTNs or 
other decompositional techniques to generate story requires 
reasoning at higher levels of abstraction than the action (or event), 
and this introduces potentially rigid top-down structuring of plot 
that can limit opportunistic discovery such as in [14, 16]. 

The vignette transformation algorithm uses analogy to find 
mappings between actions in different domains.  Analogical 
transformation has been used for story generation before.  Hervás 
et al. [6] uses analogy to map the state of one domain to the state 
of another domain to construct informative expository statements 
such as “Luke Skywalker was the King Arthur of Jedi Knights.”  
Our approach maps operators at which time, as a side effect, state 
is also mapped.  

5. FUTURE WORK AND CONCLUSIONS 
In order to make vignette-based story planning practical, we 
enforce the rule that vignettes must be close enough to the new 
story’s domain that near transfer is possible and quick.  However, 
this requires that vignettes undergo far transfer prior to invoking 
VB-POCL.  This pre-processing stage, described in Section 3, is 
slow but only has to be done when a new domain is created.  One 
interesting conclusion of our work to date is that the vignette 
transformation process can work with relatively little extraneous 
information.  However, more knowledge is better and linking to 
WordNet [11] or other sources of ontological information will 

Figure 2. Graph of two competing operators, “Soldier 
leaves camp” and “Soldier steals gun”. 

Figure 1. Graph representation of operator “Prince 
takes sword”. 



increase the processing speed, provide more accurate results, and 
ease authoring of domain knowledge.  The technique described in 
[6] is complimentary to our own and could contribute to our 
vignette transformation process by competently mapping 
characters between domains before an attempt at mapping domain 
actions is made. 

This knowledge-intensive approach to story generation enables us 
to use pre-screened vignettes as the building blocks of new 
stories.  There is no guarantee that a new story made up of 
assembled vignettes will be good.  However, it may be possible to 
annotate vignettes with metadata that can further inform the story 
generator about when and how to incorporate vignettes into the 
story structure.  Future work involves additional algorithms to 
reason about when to use vignettes versus other story generation 
techniques.  Future work is also needed to determine the extent to 
which vignette-based story generation can scale. 

This work represents a step toward more sophisticated plan-based 
story generation, in the absence of computational models of story 
aesthetics, by incorporating partial order planning approaches to 
story generation with case-based reasoning-like approaches to 
story generation.  The eventual goal is to develop generative 
drama managers and experience managers that are more effective 
in adapting to the actions and intentions of interactive participants 
by generating better stories. 
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