
From the Event Log of a Social Simulation to Narrative
Discourse: Content Planning in Story Generation

Carlos León and Samer Hassan and Pablo Gervás 1

Abstract.
This paper presents a proposal for implementing automated story

telling of narrative threads within a multiplayer game based on selec-
tion and linearization of game logs. Our initial prototype operates on
logs generated artificially by a social simulation built by a multiagent
system. This provides a log of events for a large set of characters em-
ulating real life behaviour over a certain period of time, with no need
to carry out a real game involving several players over an equivalent
time. The proposed method addresses tasks of content determination
- filtering the non-relevant events out of the total log -, and discourse
planning - organizing a possibly large set of parallel threads of events
into a linear narrative discourse. Actual sentence planning and real-
ization is not addressed, but rather performed in a crude manner to
allow readable presentation of the generated material. Examples of
system input and output are presented, and their relative merits are
discussed. The final section discusses futures lines of work that may
be worth exploring.

1 Introduction

Narrative games used for educational purposes have a great potential
for improving the learning experience for students, both in terms of
making it more interactive and by providing a strong entertainment
component that might act as additional motivation. Part of this poten-
tial lies in the fact that there is a story underlying the game. This story
is in most cases only implicit, in the sense that it arises as the game
goes on. This is what makes it interactive, and it presents advantages
from the point of view of entertainment. However, from a pedagogi-
cal standpoint, having access to an explicit version of the same story
may provide additional advantages. On one hand, it may provide the
student with a textual summary of how a particular game or gam-
ing session developed. This may be of use when revising material
that has already been covered, or in trying to understand what went
wrong. The ability to revise is an important ingredient of the learning
experience. If games are to take the role currently played by lectures
or laboratory sessions, the explicit narratives of such games might
play the part of the notes usually taken by students - as game players
are unlikely to take notes as they play. On the other hand, explicit
narratives reviewing particular sections of a game may constitute a
useful tool in developing functionalities for assisting student/players
in succesfully completing the game, maybe by explaining how a par-
ticular situation in which they find themselves has come about. It is
common for current games to have a set level of difficulty, so that
part of their entertainment value lies in the challenge of reaching the

1 Department of Software Engineering and Artificial Intelligence.
Universidad Complutense de Madrid.
cleon@fis.ucm.es, samer@fdi.ucm.es, pgervas@sip.ucm.es

level of profficiency required. Players setting off to achieve it from
a low level of proficiency may have a hard time at the initial stages,
up to the point where many give up before achieving the goal. Pro-
viding the system with help facilities based on inserting small nar-
ratives explaining particular details required for solving puzzles may
be seen as detracting from the challenge the game presents as means
of entertainment, but they can be a positive addition from the peda-
gogical point of view if they ensure that more of the students setting
out to solve the game actually reach the final goals. To make the
point clear, an example is presented for a particular type of game.
Some modern games, like MMORPGs2, are played by several play-
ers over huge maps with many locations and many characters. These
games usually have different agents interacting between them, and
creating more or less complex relations that could be important for
the global story of the gameplay. Non-player characters with coher-
ent storylines, set in motion by the casual presence of one player,
may meet other players at a later point. In order to understand their
behaviour, this second player may need to know their story. This in-
formation is actually available in game logs, and it can be read by
game masters, which can then write this data in a human readable
form. If the system is to manage this task in an autonomous manner,
capabilities for automated story telling must be provided. This paper
presents a proposal for implementing such functionality: this text in
natural language explaining the most interesting parts of the game
can be generated by machines resorting to state of the art natural lan-
guage generation technologies. The actual sequence of events that
have happened is available, stored as a system log or in short-term
memory. But telling it in an entertaining way, while at the same time
filling in the gaps in the players knowledge of what has happened,
is not a trivial task. Research in automated telling of stories attempts
to fill this gap. The tasks involved will cover the basic requirements
for identifying the most relevant material among a large search space
of recorded events, converting a sequence of such events - or various
parallel sequences of them - into a story, and presenting this selection
to the user, already organised into narrative threads.

In order to avoid the task of collecting real data from massive mul-
tiplayer online games, we have based our initial prototype on a social
simulation generated by a multiagent system. This provides a log
of events for a large set of characters emulating real life behaviour
over a certain period of time. The simulation we have used was ini-
tially developed for a different purpose in the field of experimental
social sciences, and it has been adapted to its current purpose by cus-
tomising the domain characteristics and the set of possible operations
available to the agents to simulate a game-like environment.

We want to simulate a game system with many agents or game
characters where the main key is the interaction between them, and

2 Massive Multiplayer Online Role Playing Games



the result is the emergent behaviour as a social group. This be-
haviour is a full story along a defined period of time, with interesting
episodes, boring ones, communities trying to survive, and individual
characters doing incredible things. We propose a multi-agent system
with social capabilities, emulating a real fantasy medieval game. We
have developed a multi-agent system that simulates a community of
non-player characters being born, living and dying, where each agent
or character saves its history. When all these histories are generated
as data logs, we process them to build a structure where only the
important facts are told, and that can be easily translated to natural
language, freeing in this way the game masters or system adminis-
trators from writing this text themselves.

2 Previous Work
In order to develop this system, we have resorted to previous work in
the fields of natural language generation and social simulations using
multi-agent systems. A brief outline of the relevant studies is given
in this section.

2.1 Automatic story generation
The general process of text generation takes place in several stages,
during which the conceptual input is progressively refined by adding
information that will shape the final text [9]. During the initial stages
the concepts and messages that will appear in the final content are
decided (content determination) and these messages are organised
into a specific order and structure (discourse planning), and particu-
lar ways of describing each concept where it appears in the discourse
plan are selected (referring expression generation). This results in a
version of the discourse plan where the contents, the structure of the
discourse, and the level of detail of each concept are already fixed.
The lexicalization stage that follows decides which specific words
and phrases should be chosen to express the domain concepts and
relations which appear in the messages. A final stage of surface real-
ization assembles all the relevant pieces into linguistically and typo-
graphically correct text. These tasks can be grouped into three sepa-
rate sets: content planning, involving the first two, sentence planning,
involving the second two, and surface realization.

The work presented in this paper is related to the first two tasks:
content determination and discourse planning. Content determination
is known to be always heavily dependent on the particular domain
of operation, and tightly coupled with the particular kind of input
being processed. Little generalization is possible for this task. Dis-
course planning determines the ordering and rhetorical relations of
the logical messages, hereafter called facts, that the generated doc-
ument is intended to convey. Most existing approaches to discourse
planning are based on either rhetorical structure theory (RST) [5, 4]
or schemata [6].

2.2 Social systems
Social phenomena are extremely complicated and unpredictable,
since they involve complex interaction and mutual interdependence
networks. Sociologic explanations deal with large complex models,
with so many dynamic factors involved, they are not subject to laws,
but to trends, which can affect individuals in a probabilistic way.

A social system consists of a collection of individuals that inter-
act among them, evolving autonomously and motivated by their own
beliefs and personal goals, and the circumstances of their social envi-
ronment. Due to the mentioned complexity, techniques are required

that consider how global behaviour can be derived from the real sub-
jects’ behaviours, which are fundamental in any social system. In
particular, there is an interest in observing the emergent behaviour
that results from the interactions of individuals as a way to discover
and analyse the construction and evolution of social patterns.

A multi-agent system (MAS) consists of a set of autonomous soft-
ware entities (the agents) that interact among them and with their
environment. Autonomy means that agents are active entities that
can take their own decisions. The agent paradigm assimilates quite
well to the individual in a social system. In fact, there are numer-
ous works in agent theory on organisational issues of MAS. Also,
theories from the field of Psychology have been incorporated to de-
sign agent behaviour, being the most extended the Believes-Desires-
Intentions (BDI) model, in the work of [2].

With this perspective, agent-based simulation tools have been de-
veloped in recent years to explore the complexity of social dynam-
ics. In this way agents’ reactions can be monitored in an observable
environment, defining the lines of system evolution. This provides
a platform for empirical studies of social systems. And because of
that, the specification of characteristics and behaviour of each agent
is critical, so it can manage the dimensions of the studied problem.
A screenshot of one of these tools is shown in Figure 1.

In the MAS designed, as explained in [7], the agents have been de-
veloped with several main attributes: from simple ones such as sex or
age, to complex ones, like for example ideology or educational level.
The population in the agents’ society (as in real societies) also exper-
iments demographic changes: individuals are subject to some life-
cycle patterns: they get married, reproduce and die, going through
several stages where they follow some intentional and behavioural
patterns.

Moreover, the agents/individuals can build and be part of rela-
tional groups with other agents: they can communicate with other
close agents, leading to friendship relationships determined by the
rate of similarity. Or, on the other hand, they can build family nuclei
as children are born close to their parents.

Thanks to the underlying sociological model, the parameters of
the social simulation system fit all together logically. In this way, the
system may be configured to reflect the parameters (such as average
number of children per couple, or mean of male average age of death)
from a specific country or even import data from surveys that spec-
ify the attributes of the agents, reflecting the behaviour of the given
population.

Besides, due to the relative simplicity of the agents, the system
can manage hundreds of them, reaching the necessary amount for
observing an emergent behaviour that results from the interactions of
individuals, leading to the appearance of social patterns than can be
studied. And for this study, during and after the execution of the sim-
ulation tool several graphs may be plotted that reflect the evolution
of the main attributes of the social system.

3 Story Generation

Our approach to story generation is based on three tasks: content
determination, discourse planning and sentence planning:

• In content determination we choose which data is going to be use-
ful for the final narration. In this stage we suppress irrelevant facts
present in the log, obtaining a version where redundant or useless
data is removed. We can see this step as a “filter” of the log.

• Discourse planning consists on identifying a proper order of pre-
sentation of the previous data. We apply a particular technique (we



Figure 1. Screenshot of the social simulation

can use several algorithms, later this will be explained), and give
the selected data generated in the content determination stage a
particular order of narration, considered interesting for the read-
ers of the final text.

• Then, we can perform sentence planning. This last step is the final
process to be done, where the ordered log that represents a story
in a structured form is translated to a natural language text.

It is not necessary to run these steps in sequential order. We have
decided to join the two first steps into a single one; however, they
could be done separated. Next we explain the solutions we have used
for this work for each of these previous steps.

3.1 A Manual Story Generation Tool

Before creating a fully automatic system, we want to know which
rules we, as humans, apply in story generation. That is the reason
why we have created a tool for manual story generation, Herodotus.
With this tool it is possible, with a simple few mouse clicks, to
“draw” a full discourse from the facts and the logs recorded during
an execution of a multi-character system.

With Herodotus it is possible to perform content determination,
excluding from the final story those facts that we consider to be
boring or not relevant; discourse planning, creating the components
needed to define a particular narration: relationships between facts
(nexus between consecutive facts, like “while”, “then” or “before
that”), discourse atoms, or blocks of facts which are a semantic units
(can be seen as paragraphs) and start and end points of the story; and
simple sentence planning, with template-based solutions for trans-
forming facts into text. This tool can also export a file in each step,
in this way, for example, we could do content determination and dis-
course planning, export the result, and run a different program to
generate natural language text, or an animated summarised repro-
duction of the gameplay.

To use Herodotus one only needs to load an XML file from the
multi-agent system or from the log of a real game. Then, the full list
of logs for each agent/player becomes visible in the main panel, with
their facts, ordered by time. Once loaded, the log can be edited just by
dragging with the mouse, drawing lines that represent relationships
between the facts.

The facts can also be removed from the list, as well as the full logs,
just by selecting them by clicking over them with the mouse, and
pressing a button on the toolbar. Also, logs and facts can be added by
hand, creating new threads of action and new characters.

Once we have connected the facts in order, and having removed
those facts that are not important, it is only needed to group the events
in blocks, that will be the discourse atoms, as we have explained
before.

In Figure 2 we can see a screen capture of Herodotus working.

Figure 2. Screenshot of Herodotus

3.2 Adapting the MAS for Story Generation

The ideas expressed above concerning social simulations using mul-
tiagent systems are the core of action from which we have built the
whole narrative system. Several changes to the original MAS have
to be made in the perspective of execution to be able to generate full
logs of action which will be the basis for the texts describing the sto-
ryline. It is necessary to shift the point of view from data acquisition
to log generation. These logs must save the data in such a way that
story generation can be carried out as easily as possible. We do not
need numerical data, but semantic content that can be interpreted by
the rules as we interpret them, because we want the story generation
to be as close as possible to what humans might have done faced with
similar sets of events.

We changed the meaning of the actions of the agents, not only by
changing their names and the sets of them, as explained below in 3.3,
but also by changing our interpretation of them, creating in this way
a rather different world. For example, a value of “low” in economy
has a particular meaning in the social simulation (a small house, no
car), but in a Middle-Age time setting, a “low economy” means that
the character is a peasant. Following this, the semantics we assign



to each fact affect the significance of that fact in particular. A “low
economy” character in the medieval setting does not have the same
interest than a “low economy” character in a modern society.

3.3 Adapting the MAS to a New Environment
Several minor changes have been introduced in the designed MAS
for its adaptation to a new environment: a Fantasy Medieval World
far from the previous Post-Modern context. Thus, we have intro-
duced Name and Last Name apart from the ID of each agent, to-
gether with the inheritance of the Last Name: this will be useful for
telling the stories of lineages, and for personal events. We added a
new attribute to each individual: the race, so they can be elves, hu-
mans, dwarfs... Thanks to the modular structure of the system it has
not been a difficult task to achieve.

Other changes are related to the system structure. One problem
was the involvement of non natural deaths, never considered in the
old MAS. We added a random possibility of dying for each agent,
allowing the possibility that we can relate this early death to the be-
trayal of a friend, poisoning by a wife, or even a mysterious accident.

The finishing touches arrived with the recording of the sequence
of “life events” for every individual. But usual life events, like having
friends, finding a couple, or the birth of children, are not interesting
enough to build an exciting fantasy adventure. Because of that, we
have included new types of events related to this context that will
appear randomly. Thus, along his path, the agent can suffer several
spells (loss of memory, fireball... or even change of sex!), kill horri-
ble monsters (ogres, dragons), get lost in mazes or dark forests, find
treasures and magic objects in dangerous dungeons... In this way we
can build a really amazing (and sometimes weird) story, with several
characters that evolve and interact among them.

At the end of simulation, this collection of events, together with
the agents’ characteristics, is exported to an XML file. The XML-
Schema pattern that rests beneath is not context-dependant, so the
same format can be applied to other simulation environments. This
file will be imported by a tool that will continue with the process of
generating a story from the lives of some of these agents: the most
interesting ones.

Here we present an explained example of the generated XML with
the important information of each agent. In Figure 3 we can see the
header of the file.

<?xml version="1.0" encoding="iso-8859-1"?>
<Story Id="fantasy">
<Description>
A fantasy Middle-Age world

</Description>

Figure 3. XML header of a log

Now the logs of every agent are listed: the initial ones, together
with the next generations that appear during the simulation. Here we
show just one of these logs: the one corresponding to the individual
that will be selected as star of our story.

Each log is divided in two main sections. The first one (Figure 4)
corresponds to the characteristics of the agent: each attribute of the
character has two parameters, expressed as XML attributes: its ID
(identifier of the attribute) and its Value. The value of these keys is,
of course, context-dependant: here they represent aspects like its race
or how religious the character is.

<Log Id="i212">
<Description>
Log of a character of the simulation.

</Description>
<Attribute Id="name"

Value="badash"/>
<Attribute Id="last_name"

Value="taltaur"/>
<Attribute Id="race"

Value="elf"/>
<Attribute Id="sex"

Value="female"/>
...
<Attribute Id="religion"

Value="very religious"/>

Figure 4. Attributes of a character

The second main section (Figure 5) is the collection of life events,
associated with the time in which they took place. As in the pre-
vious sections, XML attributes are context-free, but values of these
attributes depend on the context. Thus, we can read in the full log
(here we only show a small fragment), that in the year 515, the elf
Badash Taltaur suffered a spell that transformed her into a frog. Or,
analyzing the chain of events, we can see that the impossible love of
her youth was, after she grew to be an adult, her formal couple, giving
her many children and living happily... at least for some years.

<Events>
...
<Event Id="e9" Time="515"

Action="spelled" Param="frog"/>
<Event Id="e10" Time="515"

Action="impossible love"
Param="i229"/>

...
<Event Id="e14" Time="526"

Action="couple" Param="i229"/>
<Event Id="e15" Time="526"

Action="child" Param="i258"/>
<Event Id="e16" Time="526"

</Events>
</Log>

Figure 5. Events of a character

3.4 A Rule-Based Story Generation System
Given appropriate configuration parameters the social simulation
generates a set of results which is sufficiently complex to constitute
an interesting challenge for content planning. For this purpose, we
have extended the manual story generation tool with an automatic
story generation system. This program accepts a thread of facts from
each agent of a defined set, and analyzes the connections and rela-
tions between these threads in time.

In our current design, we have chosen to perform an iteration
through the elements of the log, using a rule-based system. Our first
try was to implement the rule system in Jess [3], but, although it did
work, the execution was extremely slow, and it required enormous
amounts of memory. In contrast, writing rules in Jess is much easier
than in Java, language in which we have developed the final version.



We have defined a set of domain-dependent rules for this problem
in particular. We want to keep separated the general application of
story generation (the editor Herodotus, structures for storing the sto-
ries, the natural language text generator, etc.) from ad-hoc content
specialized for the specific system or a particular game. In this way
the only work needed for adapting the application to other domains
is restricted to defining the rules that establish which facts are impor-
tant, and how they are going to appear in the final text, presentation
or animation.

We have considered these rules to be expert knowledge. In the do-
main we are working on we cannot ignore the semantics present in
the data saved in the logs during the gameplay for story generation.
The meaning of particular attributes, not measured with numerical
weights, must be taken into account before narrating a log: killing a
red dragon is usually more interesting than killing a little spider. Of
course, we can set some numerical values, as “kill-dragon interest”,
that should be a higher value than “kill-spider interest”, but the fi-
nal discourse will be made interesting with some “hand-made” rules,
established by the system administrator, or perhaps the game-master.

3.4.1 Content Determination

As commented before, the first thing to do is to determine which data
is not going to be told, and remove it. There are many possible so-
lutions for this problem. The one we have used is to give a factor
of interest to the characters. This interest factor is only a numerical
value that represents how important it is for that character to appear
in the story, not necessarily the comparative importance of that char-
acter with respect to other characters in the story. The value can rep-
resent real interest, coherence, fun, or any other reason why a given
element from the logs should appear in the final text. In this way, a
unimportant character can have a high factor of interest, because it
is necessary that such character appears in the story. This factor is
divided in two values:

• Base interest (Ib(X)) is the value we associate with the facts of
some character X , and with their attributes. In this way, the char-
acter can be easily evaluated. With the attributes we can design a
heuristic function h that represents the significance of some fact
in the life of that character, given the attributes. It is usual for a
man to fall in love, but not for an orc. That is why falling in love is
more interesting in an orc’s life than in a human’s life. The actual
method for computing Ib(X) is shown in Formula 1 below,

Ib(X) =

n∑
i=1

fi · h (X, i) (1)

where fi is the interest that we assign by hand for the fact i, x is
the character, and h(x, i) is the weight for the appearance of i in
the life of x. The value of h is calculated with the type of i (what
kind of fact it is) and with the attributes of x (if it is an elf, or an
orc).

• Relationship interest (Ir(X)) is the level of importance of a char-
acter X calculated from the interest of their relationships with
other characters: friends, foes, offspring, etc. We could not build a
good factor of interest by considering only the characters as indi-
viduals, so we added this additional value. As before, the attributes
of a character determine the final interest. We have a new function,
g, depending on the relationship and the two characters, that rep-
resents the true interest of a relation: two elfs can easily be friends,

but it is very strange (and perhaps we should tell about it) a friend-
ship between an elf and an orc. The actual value is obtained using
Formula 2 below,

Ir(X) =

n∑
i=1

Ib(Y ) · g (X, Y, i) (2)

where Ib(Y ) is the base interest of the character who has the rela-
tion i with X , and g is the heuristic function of the relationship i
between different characters X and Y . The value of g is calculated
with the type of i (what kind of fact it is) and with the attributes of
x and y (if they are two orcs, or an orc and an elf, for example).

The final factor of interest is, in our current implementation, ob-
tained according to Formula 3:

If = Ib + Ir (3)

Once we have this value calculated, we have a new explicit data
that will determine what is going to appear in the final structure. With
the “interest” and some rules, like redundancy elimination (delete
symmetric data: A is friend of B, and B is friend of A, then delete
A or B), omission of irrelevant characters (those that are just born at
some stage of the gameplay and then die at some later stage with lit-
tle intervening activity), and of course, an importance filter (remove
those characters whose factor of interest falls below a given thresh-
old), we can have a set of facts and characters ready to form part of
the final story. With these and other rules and filters, we can deter-
mine not only which characters are going to appear, but also which
of their facts are going to be shown. The particular solution applied
in generating the interest factor ensures that facts that are related to
important characters are always included. This is intended to avoid
the risk of eliminating non-interesting elements that may be of im-
portance in a plot.

3.4.2 Discourse Planning

In discourse planning, basically we just reorder the facts in the story,
and adapt the relationships between them. This is, in terms of com-
puting, an easy task. But the goal of discourse planning is not only
organizing the facts stored in the log, but inferring the guidelines of
the story, giving them priority, and making them the main structure
of the narration.

Several tasks must be accomplished in order to create a meaning-
ful, clear and interesting story. In fact, we have found that these tasks
are very dependent on the domain, and on what we want to present
in the final story. While, as we have verified, adjusting the factor
of interest to appropriate values is usually good enough for content
determination, in discourse planning this is not true. It is very diffi-
cult to write general rules that generate different stories for different
domains.

What we have done is to define ad-hoc rules for the domain we
are working on, to process the particular data we have; and rules to
generate the stories that we think that could be interesting for the
reader. This rules are based on the three sets of data that we have:
facts content, attributes of the characters and the time.

Some of this rules are, for example, to narrate the birth and death
date of the main character only, to maintain a more or less time-
ordered discourse, to talk about the unusual facts only, and so on. If
we wanted to generate stories of fairy tales, for example, we could
have omitted the dates, and we could have ordered the facts in a dif-
ferent way, trying to hide data that is only important in the end of the
story.



It is important the way we manage time. In [1] we can see many
ways of representing time, very related to this work. At this moment
we consider that facts are instantaneous, ignoring intervals and time
reasoning. We generate the time nexus between facts also with rules,
and we have verified that, for simple narrations, this could be suffi-
cient.

Once we processed the initial log, and having performed content
determination and discourse planning, we can generate the final re-
sult. This result can be not only text, but also a script that controls an
animation, a generated comic, or a summarised reproduction of the
gameplay.

3.4.3 Sentence Planning

The final generation of the story is not only a nice way of showing
the results. It can make the discourse interesting or boring, even if the
order of the facts resulting from discourse planning is bad or good,
respectively. Thus, we cannot ignore this step if we want to evaluate
the generated content. It is not the same to say “Elrond was an Elf.
He had a daughter called Arwen. Elrond was friend of Aragorn.”,
as to say “Elrond the Elf, father of Arwen, was friend of Aragorn
the King”. The final form of sentences not only gives beauty to the
text, but may also convey information not actually present in the data
structure. We can infer, in the second sentence, that Elrond is some-
body important, as Arwen, and Aragorn is going to play a main role
in the story. This knowledge is not contained in the first sentence. To
achieve computational modeling of these characteristics is currently
beyond the scope of this paper, but we intend to address it in future
work.

The actual examples of output text presented in this paper have
been generated with the use of a simple template-based surface real-
izer built on purpose for this particular application, and which pro-
duces monotonous text with little inflexion and no concern for liter-
ary style. This is because the main concern of the research reported
here has been the succesful completion of the content determination
and discourse planning tasks. For this purpose, such output texts are
sufficient, and yet considerably easier for the reader to understand
than the corresponding XML output files. The final result in terms of
stories to be read by humans may be considerably improved by re-
sorting to an existing sentence planning application. In future work,
we intend to address this problem by integrating the present work
with the PRINCE generator [8].

3.5 An Example
Now, we show a real example of our application. The multi-agent
system is capable of running parametrized simulations, changing the
number of characters, probabilities of the facts, years of simulation,
and all other attributes of the system. Once executed, the system gen-
erates logs in XML, like the ones we have presented in 3.3.

At this stage, the story generation application reads the resulting
XML file, and outputs a text. This example is the result of a simu-
lation of the life of 200 initial characters and their descendants over
a time span of 80 years. The system has inferred who is the most
important character, and it produces the following rendition of her
mortal life:

The Great Story - A fantasy Middle-Age world:
Badash Taltaur the Elf was born in 504.
Badash Taltaur met Amdor Taltaur, and she was lost in a forest,
then she was enchanted with the incredible spell of memory,
then she found a Magic Ring.

Badash Taltaur was lost in a labyrinth, then she met Wer-
lom Mcknight, and Werlom Mcknight was offspring of Rirbag
Greatgibber, and Badash Taltaur was involved in a great battle,
then she was enchanted with the incredible spell of frog.
Badash Taltaur fell in love, desesperately, with Werlom Mck-
night, then she was lost in a forest, then she found a Treasure,
then she married Werlom Mcknight, then she had a child: Idrin
Taltaur.
Badash Taltaur had a child: Dora Taltaur, then she had a child:
Dwalin Taltaur, then she had a child: Pimmam Taltaur, then she
had a child: Baradadan Taltaur, then she found a Magic Sword.
Badash Taltaur found a Magic Ring, then she was lost in a for-
est, then she was involved in a great battle, then she was en-
chanted with the incredible spell of sex, then she was lost in a
forest.
Badash Taltaur found a Treasure.
Badash Taltaur died in a mysterious accident in 555.
The end.

4 Discussion
There are three main points worth discussing in an analysis of the
proposed story generation solution: the possibility of evaluating re-
sults by comparing with human performance over similar tasks, the
possible role of the sentence planning solution employed in the per-
ceived quality of the output, and the particular choice of implemen-
tation that has been used.

4.1 Evaluation Against Human Performance
We are not evaluating if the story is interesting or funny, yet. We are
only focusing on how similar are the machine generated stories with
those stories that could be written by humans from the same source.
We will keep on refining, in particular, the content determination pro-
cess, because the output of this step is where we decide the interest
of the elements of the story.

It would be interesting to compare the resulting work of the ap-
plication of content determination and discourse planning in a log
from a gameplay presented on this paper with a manual generation
of the same log. In this way, we could see if the rules that we have
applied in the code (filtering, ordering, connections between events)
are those which would be applied by a human narrator. This task is,
of course, possible, but the cost in time and human effort is very high.
To perform the previous tasks by hand, over a log of 500 characters,
could mean several days of work.

This prevents us, in principle, from evaluating how correct our
application is, but it is an indicator of the utility of this work. This
kind of story generation is very hard to do by humans, and can be
easily done by machines. However, one possible evaluation of the
system could be to ask a group a people to write a text describing a
small set of facts of the log. This would provide an evaluation of the
discourse planning stage of the system, but only partially address the
evaluation of content determination - unless an evaluator chooses to
omit a fact included in the selected set. In this way, we could compare
human generated texts with machine generated ones.

4.2 The Effect of Bad Sentence Planning on
Perceived Quality

Relative to the final output of the present work, it is obvious that the
final example of generated text that we have presented does not have



a nice form, and the narration is a little boring. The reason is that the
sentence planner we are using is a skeleton implementation not even
intended to be passably correct at its task.

This can be easily illustrated by a close analysis of the sentence
planning tasks that are performed poorly in the given example, and
considering how the text might have improved if those tasks were
actually addressed in the implementation.

An important issue is how the sentence planner decides to rep-
resent the fact that a particular set of facts have been grouped by
the discourse planner into a block of related events, to be narrated
as a distinct thread within the discourse. In the current implemen-
tation this is simply solved by chunking all such facts into a single
sentence, clumsily linked together with discourse markers indicating
some kind of sequence. This can be seen in the example above in
fragments such as:

Badash Taltaur met Amdor Taltaur, and she was lost in a forest,
then she was enchanted with the incredible spell of memory,
then she found a Magic Ring.

This could easily be improved if, for instance, a simple sequence
of sentences where used:

Badash Taltaur met Amdor Taltaur. She was lost in a forest. She
was enchanted with the incredible spell of memory. She found
a Magic Ring.

However this obscures the fact that there are indeed chronological
relations linking these particular facts with one another. A complex
sentence planner would have to take this into account, and possible
decide to give up the chronological information in favour of more
fluid text.

Another related problem concerns sentence aggregation. The cur-
rent sentence planner is incapable of detecting that a fragment such
as:

...then she married Werlom Mcknight, then she had a child:
Idrin Taltaur.
Badash Taltaur had a child: Dora Taltaur, then she had a child:
Dwalin Taltaur, then she had a child: Pimmam Taltaur, then she
had a child: Baradadan Taltaur,

might be considerably easier to read in a form like:

She married Werlom McKnight. They had five children: Idrin
Taltaur, Dora Taltaur, Dwalin Taltaur, Pimmam Taltaur and
Baradadan Taltaur.

This transformation seems simple but involves at least an abstrac-
tion that is not trivial: the fact that a set of facts with the same pred-
icate can be regrouped as a single predicate with a plural compound
second argument.

This same example illustrates a different problem, that of referring
expression generation. The sentence planner does indeed address this
task in a clumsy manner, deciding at different places in the discourse
to refer to a given character either by its full name or by a pronoun.
This could be greatly improved, especially if it were considered in
its interaction with elements such as additional sentence boundaries
arising from a more refined realization of narrative threads. Addi-
tional issues related with this task arise from the fact that, if they are
mentioned in close proximity, knowing the surname of the parents
one may omit the surnames of all their children. This could lead to
an even more refined version of the example above:

She married Werlom McKnight. They had five children: Idrin,
Dora, Dwalin, Pimmam and Baradadan.

4.3 Implementation Issues: Modularity vs.
Efficiency

Relative to the implementation, it is also worth discussing the effi-
ciency problems we have encountered using a declarative rule defi-
nition system like Jess. We first tried to build the whole rule system,
and the evaluation of every fact present in the log, just using an im-
plementation written in Jess. But it has problems of efficiency, be-
cause the algorithm behind Jess (the Rete algorithm), works in a way
that is not optimal for our problem in particular.

We could have, then, implemented a hybrid system, and, while this
is possible, the remaining content that could have been written in Jess
was very reduced and easily translatable to Java. For that reason, we
decided to stop using Jess, at least for this work.

As an example of rule, we present a definition of a simple filter
that removes from the list of facts, those whose interest is equal to
zero.

In Figure 6 we show the code as we implemented using Jess. The
line “(event (type ?type)(interest 0))” means “that
event of a defined type that has no interest”. The other conditions
in the rule are needed for the interface with Java (with the data struc-
tures). The resulting action of the rule is to remove, from the story,
that fact.

(defrule remove-non-interesting
(story (OBJECT ?story) (facts ?facts))
(fact (type ?type)(OBJECT ?fact))
(test (?facts contains ?fact))
(event (type ?type)(interest 0))
=>
(?story remove ?fact)
)

Figure 6. Rule implemented in Jess

The corresponding code in Java is the one we show in Figure 7.
This implementation is much faster. If we add more rules to the sys-
tem, and make them sequential in a Java program, it will be even
more efficient than if we implement the rules in Jess.

ListIterator<Fact> it = facts.listIterator();
while (it.hasNext()) {

Fact h = it.next();
if (h.getInterest() == 0) {
it.remove();

}
}

Figure 7. Rule implemented in Java

5 Conclusions

We have presented a system where interactions between agents over
a long period of time can be told in natural language automatically.
With this work MMORPGs can generate texts describing the game-
play for different audiences and purposes. The text could be gener-
ated at the end of the game or while a player is still playing, or it
could be the script for a 3D, or a generated comic.



We have shown a particular way of generating the stories, based
on rules. We have explained a three-step process for performing this
task, and we have verified that for discourse planning, the rule-
system is very dependent on the domain, and the desired type of
story.

Although the implementation includes an application for the man-
ual development of narrative structures from a log of events, it has
proved impossible to contrast the results generated by the applica-
tion with any manually obtained equivalent due to the sheer size of
the input logs that the application is currently handling. The effort in-
volved for human evaluators is too large for voluntary participation.

The results of the system are less impressive - when rendered in
a readable text format - than they might have been if the system in-
cluded an elaborate sentence planning module. The current version
is just a skeleton implementation that lets down an otherwise accept-
ably selected and planned discourse.

6 Future work

We plan to empower the multi-agent system, through several lines
of evolution. The main point where improving is always required is
to build a more interesting story. The introduction of random events
was a huge step in this direction, and more improvements in this field
can have incredible results.

We can add more characteristics to the agents, selecting the most
attractive for the context. For example, including the profession or
role of each agent could be a great idea for improving the story told:
knight, king, princess, wizard, priest, peasant... If a peasant kills a
dragon, would be much more heroic than if a knight does so. Another
good characteristic to be introduced is geographical position. In our
social simulation there is a graphical visualization of the agents, dis-
tributed in a space. If we parse this (x, y) positions dividing the space
into countries, we would have knights that come from a far kingdom
to save the princess.

Adding characteristics is now a particular field of the agents... but
what about if we give “personality” to the inanimate objects? If we
give an ID and a Name to the objects of the events, we would have
events like: “lost in the Lorien Forest”, “found the Anduril sword”,
or “killed by the dragon Smaug”. These events can be analyzed to
generate stories in which the dragon Smaug killed three knights (with
their names), but the fourth one, Aragorn, at last killed him and freed
the Gondor kingdom.

The relationships between agents represent another sector where
we can add complexity. New type of relations could be included: hate
(natural feeling between orcs and elfs), complex family relationships
(like cousins), to belong to the same religious order...

The most part of the fantastic life events (like killing a dragon) are
generated randomly in every agent. Thus, the events are particular
for each agent. A new type of event could be generated: a common
random event, which could affect to lots of agents at the same time
(maybe to the whole world, maybe to just one kingdom). For exam-
ple, a huge battle in the year 527 between dwarfs and orcs, killing lots
of them, harming others, killing loved ones... and even it can lead to
a prince that inherit the crown of his dead father.

Other improvements are planned for the story generation tool. A
new objective can be to find a more efficient alternative to the one
we tried with Jess only, perhaps a hybrid implementation between the
speed of a procedural language, and the flexibility and power of a rule
definition language, so the tool can be built in a more modular way,
and also having the benefit of an easier to write system. Of course,
another line of evolution is to enlarge the amount of rules that control

the rule-based system, so more precise and complex knowledge can
be used.

Another important objective is to apply more sophisticated time
representation and reasoning concepts for fact and block nexus. It
is very important to focus on how we narrate the story in terms of
choosing what should be told before, and how we connect it with the
rest of the discourse.

Different approaches to story generation are planned, and future
comparisons between this work and them. An interesting line of
research that is contemplated is to consider whether a Case-Based
Reasoning solution, applying in discourse planning a set of patterns
learned from the way humans have told similar sequences of events in
human-generated stories, might compete with the simple rule-based
solution.

ACKNOWLEDGEMENTS
This work is partially supported by the Spanish Ministry of Ed-
ucation and Science project TIN2006-14433-C02-01, and research
group grant UCM-CAM-910494, jointly funded by Universidad
Complutense de Madrid and the Comunidad Autónoma de Madrid
(Dirección General de Universidades e Investigación).

REFERENCES
[1] James F. Allen, ‘Time and time again: the many ways to represent time’,

International Journal of Intelligent Systems, 6, 341–355, (1991).
[2] M. E. Bratman, Intention, Plans, and Practical Reason, Harvard Univer-

sity Press, Cambridge, MA, 1987.
[3] Ernest Friedman-Hill. Jess, the rule engine for the java platform.

http://herzberg.ca.sandia.gov/jess/, 2006.
[4] E. Hovy, ‘Automated discourse generation using discourse structure re-

lations’, Artificial Intelligence, 63(1-2), 341–386, (1993).
[5] W. Mann and S. Thompson, ‘Rhetorical structure theory: Towards a

functional theory of text organization’, Text, 3, 243–281, (1988).
[6] K. McKeown, ‘Discourse strategies for generating natural language

text’, Artificial Intelligence, 27, 1–42, (1985).
[7] J. Pavon, M. Arroyo, S. Hassan, and C. Sansores, ‘Simulacion de sis-

temas sociales con agentes software’, in Actas del Campus Multidisci-
plinar en Percepcion e Inteligencia, CMPI-2006, volume I, pp. 389–400,
(2006).

[8] Francisco C. Pereira, Raquel Hervás, Pablo Gervás, and Amilcar Car-
doso, ‘A multiagent text generator with simple rhetorical habilities’, in
Proc. of the AAAI-06 Workshop on Computational Aesthetics: AI Ap-
proaches to Beauty and Happiness, July 2006. AAAI Press, (2006).

[9] E. Reiter and R. Dale, Building Natural Language Generation Systems,
Cambridge University Press, 2000.


