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Abstract. Interactive art courses usually require a huge amount ofpotational resources to run in real time. These
computational demands can significantly grow whenever t@ication is designed to run within a Virtual Environment.
This paper studies the viability of combining two previgusleveloped approaches: a Collaborative Awareness Model fo
Task-Balancing-Delivery (CAMT) in clusters and the “Teaghabout Madrid” course, which provides a cultural intéirae
background of the capital of Spain. The integration of bgtsteams can improve the response times of the interactivieseou
by distributing the rendering tasks among the set of av&ilabdes at a given time. We present some experimental sabalt
show how CAMT efficiently manages the rendering process®fTeaching about Madrid” course.
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1. Introduction

The “Teaching about Madrid” course has been developed hétlaim of creating a virtual tour around
Madrid. This course is composed of a set of interactive sienésee Fig. 1) that are presented in real
time by a tour-guide. Students can interact with the scenémeeded, to get more specific information
about a monument, such as the year in which it was built olistetical background. Students can also
collaborate with each other to learn together from the tegenvironment.

Each of the scenarios of the course is projected on a CAVERgpe2) governed by a cluster of
PCs. Each of the projectors of the CAVE has a PC assigned tiwotdty) and all of these PCs are
also connected to a high-performance cluster to carry aictmplex computational operations that
are needed to compute the images to be projected on the CAVilghAspeed myrinet network allows
processing all these operations in real time, in order towigeothe user with a realistic, immersive
experience.

The CAMT model (Collaborative Awareness Model for Taskd@ualing-Delivery) is the result of a
previous research project and has been used to perform &adding operations within the Teaching
about Madrid course, with the aim of achieving real-time poration.

The design of CAMT is based on the extension and reinterjoataf one of the most successful
models of awareness in Computer Supported Cooperative Y&GBKW), called the Spatial Model of

*Corresponding author. Tel.: +34 913947560; Fax: +34 918947E-mail: gmendez@fdi.ucm.es.

ISSN 1574-1702/11/$27.50 2011 — 10S Press and the authors. All rights reserved



2 J.L. Bosque et al. / Teaching about Madrid: A collaboratigeats-based distributed learning course

Fig. 1. Palacio Real.

Fig. 2. CAVE.

Interaction (SMI), which manages awareness of interadéti@ollaborative distributed systems, through
a multi-agent architecture, to create a collaborative auperative environment. CAMT manages the
interaction in the environment, allowing autonomous, &fficand independent task allocation in it.

In addition, the “Teaching about Madrid” course is suppwiig an Intelligent Tutoring System (ITS),
a module that provides tutoring capabilities to the systerthat a human tutor needn’t be present all
the time while the users still get assistance for their le@rnThe structure of the ITS is also based on a
multi-agent architecture, which allows an easier inteégradf the system’s components.

This work presents a novel approach by proposing the cortibimaf agent-based load balancing
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techniques and intelligent tutoring systems in virtualismvments. The CAMT model’s algorithms
achieve significant improvements with respect to the respdime and speedup in comparison with
previous approaches to this issue.

2. Related work

In this section we provide an overview of related approadiah to agent-based load balancing
and agent-based intelligent tutoring in VEs. As far as oudtof related work has shown, there
are no significant works that combine agent-based load bialgrand intelligent tutoring in virtual
environments.

2.1. Load balancing

A taxonomy of load balancing methods has been defined ingRing into account different aspects.
Three important criteria for this classification are:

— Time in which workload distribution is performedccording to this aspect, load balancing algo-
rithms can be classified atatic[6,15] ordynamic[11,12].

— Control: With respect to this feature the algorithm can be labelkedeatralized10] or distribut-
ed[6].

— System state viewDepending on the view of the system state, load balanciggrithms can be
labelled agylobal [6] or local [4].

Depending on the kind of clusters, e.g., homogeneous ordgereous, these rules can be applied in a
different way. Another alternative is presented in [19]jetidefines a generic and scalable architecture
for the efficient use of resources in a cluster based on CORBA.

DASH (Dynamic Agent System for Heterogeneous) [17] is ann&fpased architecture for load
balancing in heterogeneous clusters. Three types of agemtdefined: (i) monitoring agent, which
is responsible for characterizing the local node and impleting the information policy; (ii) process
execution agent, which is responsible for the task exeoutioth local and remote and (iii) process
scheduler, which is responsible for making decisions atieitoad balancing and scheduling policies.
The most noticeable characteristic of this proposal is #faniion of a collaborative awareness model,
used for providing global information that helps estabistuitable load balance. Unlike this work, our
proposal (CAMT) extends and reinterprets one of the mostessful models of awareness, the Spatial
Model of Interaction (SMI [2]), which manages awarenessériaction through a set of key concepts.
Most of the agent-based load balancing systems use molgtgsgvhich makes the migration of tasks
easier [7,16,18].

Nevertheless, the study published in [14] concludes thattélsk migration only obtains moderate
benefits for long duration tasks. And even in this case, therame performance of load balance
algorithms does not improve by using task migration.

2.2. Agent-based intelligent tutoring
There are several projects aiming at the use of VR for edutaind training supported by intelligent

agents. The first ones were developed over a decade ago,eanmb#t representative among them are
Adele [22], Steve [23], Herman the Bug [24], Cosmo [25] anddént [26]. What all of them have in
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common is the fact that the primary objective in all of thenswa develop an embodied pedagogical
agent to support education and training. Each of them toesbtve some of the problems that this
emerging discipline posed.

None of these systems are structured as multi-agent systemas a single agent that inhabits a
particular virtual world, and each of them exhibits its owternal architecture. Even so, they have been
the key to identify some of the issues that researches #rstig to solve in a satisfactory way.

There are some examples of multi-agent systems that supgocation and training without using
VEs. That is the case of FILIP, a multi-agent system for trjrbased on simulations [27] to provide
training for air controllers. The system is composed of seagents that cover the modules of an ITS:
one for the student, one for the expert, three for the tutill @eevelopment, curriculum and instructor
agents) and two other agents related to the communicatidntiaé learning environment and the user.

Baghera is another example of multi-agent system useddb ggometry [28]. The aim of this system
is to study emergent behaviours in multi-agent systems.tWiades this system more interesting is the
fact that agents are organized in two levels, and the nunflagyemts is not fixed, but varies according to
the number of students connected to the system. Each stisdzsgisted by three agents: the personal
interface agent, which monitors the student’s actionstutor agent and the mediator agent. In addition,
the tutor is assisted by two agents: the personal interfgertand the assistant agent. All these agents
are supported by second level agents of four different kimdsich are in charge of evaluating the
student’s actions through a voting mechanism.

The systems that are closer to the one described in this papdnose that are based on multi-agent
systems and make use of VEs to support training. A good exaispMASCARET (Multi-Agent
Systems to simulate Collaborative, Adaptive and RealBticironments for Training) [29], an agent-
based system that has been used to train firemen in operatioagement. In this system, agents are
divided in organizations, each of which controls differaspects of the organization: physical, social,
pedagogical, mediation, and human interaction. The agleatsntegrate the pedagogical organization
cover the four modules of an ITS, plus a fifth module that isharge of controlling the mistakes an
student may make. The expert agent communicates with thi@ soc physical organizations to be able
to know what to do and what objects and agents are involved ac#on.

Lahystotrain is an application developed to train surgaoitaparoscopy and hysteroscopy interven-
tions [30]. This system contains five agents which help tlielestt in the training process. One of
them is the tutor, which supervises the student and regisigractions. An assistant agent provides
explanations and interrupts him when he makes a mistakeseTagents have an ad-hoc architecture
tailored to suit their responsibilities. The other threeratg take the role of an auxiliary surgeon, a nurse
and an anaesthetist that play their role within the team.arbleitecture is the same for all three, and itis
a kind of BDI architecture with a perception module, a re@sgpengine and an action control module.
The student must learn what the role of these three agemslis@v to coordinate them.

What most of these systems have in common is the fact thahthaybeen developed to solve a specific
problem, but only a few of them have been designed to be réugiad. [23]). The ITS architecture
described in this paper follows this design objective, st hcan be adapted to different domains.

3. Reinterpreting the SMI key concepts

The Spatial Model of Interaction (SMI) [2] is based on a sek@®f concepts which are abstract and
open enough to be reinterpreted in many other contexts weith different meanings [9]. The model
itself defines five linked concepts: medium, focus, nimbusaand awareness.
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3.1. Medium

A prerequisite for useful communication is that two objdwse a compatible medium in which both
objects can communicate.

3.2. Aura

The sub-space which effectively bounds the presence of @etalithin a given medium and which
acts as an enabler of potential interaction [5].

In each particular medium, it is possible to delimit the aley object’s interest. This idea was
introduced by S. Benford in 1993 [2], and it was calktus In the same way, it is possible to represent
the observed object’s projection in a particular mediunieddNimbus

3.3. Awareness

It quantifies the degree, nature or quality of interactiotmeen two objects. Awareness between
objects in a given medium is manipulated Wacus and Nimbus requiring a negotiation process.
Considering, for example, A's awareness of B, the negotiagirocess combines the observer's (As)
focus and the observed’s (B’s) nimbus.

For a simple discrete model of focus and nimbus, there aee thossible classifications of awareness
values when two objects are negotiating unidirectionalramass [9]: Full awareness, Peripheral
awareness and No awareness.

Let's consider a system containing a set of noffge$ and a task T that requires a set of processes to
be solved in the system. Each of these processes necessiaate specific requirements beinthe set
of requirements associated to the procesamd therefore each of the processes will be identified by the
tuple (p, r;) and T could be described as= _ {(p,.r;)}

The CAMT model reinterprets the SMi kezy concepts as follow:
3.4. Focus

It is interpreted as the subset of the space on which the asdfiolbused his attention with the aim of
interacting with.

3.5. Nimbus

It is defined as a tuple (Nimbus (NimbusState, NimbusSpareontaining information about: (a)
the load of the system in a given timditnbusState (b) the subset of the space in which a given node
projects its presenc&{mbusSpade As for theNimbusStatethis concept will depend on the processor
characteristics as well as on the load of the system in a disen In this way, theNimbusStateould
have three possible valugdull, Mediumor Maximum(see Section 4).

3.6. Awareness of Interactid@wareln)

This conceptwill quantify the degree, nature or qualitysyfrechronous interaction between distributed
resources. Following the awareness classification intredlby Greenhalgh in [8], this awareness could
beFull, Peripheralor Null.

Awarelnt(n;,n;) = Full if n; € Focus({n;}) A n; € Nimbus(n;)
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Peripheral aware of interaction if

nj € Focus({n;}) An; ¢ Nimbus(n;)
Awarelnt(n;,n;) = Peripheral if ¢ or
nj ¢ Focus({n;}) An; € Nimbus(n;)

The CAMT model is more than a reinterpretation of the SMixieads the SMI to introduce some new
concepts such us:

3.7. Interactive pool

This function returns the set of nod¢s;} interacting with then; node in a given moment. If
Awarelnt (n;,n;) = Full thenn; € InteractivePool(n;)

3.8. Task resolution

This function determines if there is a service in the nagdeing NimbusState() # Null, such that
could be useful to execute the task T (or at least one of itsgases).

The Task Resolution concept also complements the Nimbuseponbecause thidimbusSpacwill
determine those machines that can be taken into accourd tagk assignment process because they are
not overloaded yet.

3.9. Collaborative organization

This function takes into account the set of nodes deterntiyetie Interactive Poofunction and will
return the nodes of the system in which it is more suitablexerete the task T (or at least one of its
processes;p. This selection will be made by means of ffeskResolutiofunction.

4. The load balancing algorithm in CAMT

In this section we present the load balancing algorithmtessibeen introduced inthe CAMT awareness
model, and how it has been applied to our distributed andlootiative multi-agent architecture in the
cluster. The main characteristics of this algorithm are ihis dynamic, distributed, global and takes
into account the system heterogeneity. This algorithmaiosetthe policies described below [13].

4.1. State measurementrule

It is in charge of getting information about the computagibcapabilities of the node in the system.
This information, quantified by a load index, provides awass of the NimbusState of the node.
Several authors have proposed different load indexes aydhiéive studied their effects on the system
performance [9]. However, as for the CPU utilization, we@specially interested in the computational
capabilities of the node for the new task to be executed. Rlegathis aspect, several factors have to be
taken into account, because this concept depends not jilsesrumber of tasks to be executed but also
on the CPU’s use for each of these tasks. In this researchtwertoncept of CPU assignment is used
to determine the load index. The CPU assignmenty#, is defined as the CPU percentage that can be
assigned to a new task to be executed in the ngdd he calculation of this assignment is based on two
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dynamic parameters: the number of tasks N, which are reablg executed in the CPU queue and the
percentage of occupation of the CPU, U, and it would be catedlas:

1
f(U N) >Acru = 57

1
If<U<N>=>ACpU:1—Usage

The CPU assignmentis normalized by the maximum computpmwer of the cluster nodes to consider
the heterogeneity of the cluster.

P - Acpu
Prrax

The NimbusState of the node will be determined by the loaé)ndrhis state determines if the node
could execute more (local or remote) tasks. Its possiblgesére:

I_

— Maximum The load index is low and therefore this infrautilized nedikexecute all the local tasks,
accepting all new remote execution requests coming fromratbdes.

— Medium The load index has an intermediate value and thereforedtie will execute all the local
tasks, interfering in load balancing operations only ifrthare not other nodes whose NimbuState
would be Maximun in the system.

— Null: The load index has a high value and therefore the node idoagsd. In this situation, the
node will not execute new tasks, the computational capisilavailable are very low and for that
reason it will reject any request of new remote execution.

The NimbusState of the node depends on the load index vatliaraimcrease or decrease of this index
over a specific threshold will imply the corresponding madifion in the NimbusSate.

4.2. Information exchange rule

The knowledge of the global state of the system will be deiteethby a policy on the information
exchange. This policy should keep the information cohezavithout overloading the network with an
excessive number of unnecessary messages.

An optimum information exchange rule for the CAMT model shidee based on events [1]. This rule
only collects information when a change in the Nimbus of thdes is made. If later, the node that has
modified its nimbus will be in charge of notifying this modéiion to the rest of the nodes in the system,
avoiding thus synchronisation points. As this algorithrglsbal, this information has to be sent to all
the nodes in the system.

4.3. Initiation rule

As the model implements a non user interruption algoritte selection of the node must be made just
before sending the task execution. The decision of stastimgw load balancing operation is completely
local, it depends on the local information storage. Whenderintends to throw the execution of a new
task, the initialization rule will evaluate:

— If (NimbusState= Maximum) or (NimbusState- Medium), the task is accepted to be executed
locally.
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— If (NimbusState= Null), a new load balancing operation is started.

An advantage of this sketch is that it allows to control thgrde of imbalance in the system, by adjusting
the width of the Medium’s range (NimbusStatéMedium). As the load balancing operation takes place
between the node in which NimbusState is Null and anotherhichvNimbusState is Maximum, the
difference in the load index of the nodes has to be, at legagldo the width of Medium’s range. If this
value is very high, a bigger imbalance is allowed in the systeducing therefore the number of load
balancing operations in the system. A limit situation haypehen this value is equal to zero. If later,
all the nodes will be perfectly balanced.

Finally, another important issue is how to control the mimimCPU assignment. When a node gets a
state such that its NimbusState is equal to Null, it can rzive more tasks to be executed. This means
that the emissor threshold has a fixed value, and the minimenceptage of CPU assigned for a new
task as well.

4.4. Load balancing operation

Once the node has made the decision of starting a new loaddir@dgoperation, this operation will be
divided in three different rules: localization, distrimn and selection.

The localization rule has to determine which nodes are wawln theCollaborativeOrganization
of the node n In order to make it possible, the CAMT model needs to deteenthe awareness of
interaction of this node with those nodes inside its focusoptimize the implementation, the previous
awareness values are dynamically updated based on thenetion exchange rule. Those nodes whose
awareness of interaction with was Full will be part of the Interactive Pool of to solve the task T, and
from that pre-selection the TaskResolution method wilkd®ine those nodes that are suitable to solve
efficiently the task in the environment.

This algorithm joins selection and distribution rules hesmit determines which nodes (among all the
nodes constituting th€ollaborativeOrganizatiopwill be in charge of executing each of the processes
making up the T task. The proposed algorithm takes into atdbe NimbusStatef each of the nodes
as well as th@askResolutioto solve any of the T's processes.

The goal of this algorithm is to find the most equilibratedqasses assignment to the computational
nodes, making up the cluster, based on a set of heuristicgs sphead is made in an iterative way.
Firstly, a complete distribution of the processes makinthepl task is made in the computational nodes
implicated in theCollaborativeOrganizationlf, in this first turn, all the process were assigned to one of
the nodes involved in th€ollaborativeOrganizationthe algorithm would finish. Otherwise, it would
be necessary to calculate thimbusStatef the nodes belonging to th@ollaborativeOrganization
repeating the complete process again.

5. The underlying architecture of CAMT

The load balancing multi-agent architecture is composdowf agents: the Load Agent (LA), the
Global State Agent (GSA), the Initiation Agent (I1A), the ldbBalancer Agent (LBA) (see Fig. 3). All
these agents are replicated for each of the nodes of theclust
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Load Balancing
Agent

Balancer Agent Initiation Agent

(local)
Remote Execution
Accept / Reject ~| Load Balancing
Score Request | Agent
(remote)
Score result
Fig. 3. CAMT underlying architecture.
Load Agent
-«—Bogomips—| [proc/cpuinfo |
max_power = max’'(B1, ..., BN)
Other nodes
—F o} )i
< running_tasks—»| /procf/loadavg
«—%cpu_busy - Iproc/stat Global State
Agent
new_state = f(%cpu_busy, running_tasks) (local)
if (new_state != current_state) - new state T new_sta_t_e___ Init Agent
(local)
i

Fig. 4. The load agent.
5.1. The load agent

The Load Agent (see Fig. 4) has, as its main function, to ¢atieuperiodically, the load index of the
local node and evaluate the changes on its state. Moredwfines the thresholds determining the
changes on its state for that node. When it detects a chantpe @tate, this modification is notified to
the local GSA and IA.

The first step of the LA is to obtain the static informatiom,. ithe node computational power. The
computational power Rs represented by a parameter of the operating system, naogganipswhich
is calculated by the kernel, when the system starts, as thg® of the execution time of a set of
instructions. This value is read from tlgroc/cpuinfofile. Then this information is communicated to
the rest of the nodes through the MRéduce function, which is in charge of calculating the maxim
of the computational power of all the nodes composing thstetu
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Global State
Agent

NimbusState
NimbusSpace
Focus

-

\

Current_int_pool = SMI Conf
f(NimbusSpace,
Focus)

For(;;)

Y

message = received(), |
If (message.is(LOCAL_STATE_CHANGE)) new_state

Else if Other nodes
(message.is(REMOTE_STATE_CHANGE))
updateStateList(message)

Else if (message.is(INT_POOL_REQ)) interactive_pool =
» Load Balancing
Else if (message.is(STATE_LIST_REQ)) state list Agent
= - (local)
< y

Fig. 5. The global state agent.

Next, the agent enters in an infinite loop until the applmatnds. The first step in this loop is to get
dynamically information about the load of the node. Thiiniation is composed by the number of
running task and the CPU usage. The number of tasks thateathgtieebe executed is in thgroc/loadavg
file, and the percentage of CPU free can be obtained from thpfidc/stat

Then, the new state of the node is calculated based on thmpsanformation. With the new state,
the agent determines if a node state change has occurreal. tifessagent communicates it to the local
GSA and IA. Finally, the agent sleeps a time span, defined asaaeter by the user.

5.2. The global state agent

This agent implements the exchange information rule, aedetbre its main functionality is to
manage the state information exchanged among the nodes s§ystem, and provide the LBA with this
information as soon as it requires it.

Firstly, when the agent starts, it gets information abauigtus, its nimbusSpace and its NimbusState.
Once this information is communicated to the rest of the spildetermines the current InteractivePool.
Next, the agent enters in an infinite loop in which it is wajtio receive messages from other agents,
and therefore, from this moment, its functionality depeowl¢he kind of message that it receives. These
messages are (see Fig. 5):

— LOCAL_STATE_.CHANGE: This message comes from the local LA and this infairomehas to be
notified to all the Global State Agent that are located in gedéit node of the cluster to update their
lists.

— REMOTE.STATE_ CHANGE: In this case, only the local state list should be rfiedito update the
new state of the remote node.
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Initiation Agent

new_state
M ——— >
For(;;)

message = received();

\ 4

If (message.is(LOCAL_STATE_CHANGE))
state = message.state =

Load Agent

(local)

Else if
(message.is(EXECUTE_TASK_REQUEST))

processes = message.processes
for each p in processes {
if (NimbusState == FULL)
executeLocal(p)
else
assign(p, interactive_pool)

—
-

Fig. 6. The initiation agent.

— INTERACTIVE_POOL REQUEST: The local LBA request the InteractivePool to theAGBhe
GSA responds to this request providing it with the requirddrimation.

— STATE LIST_REQUEST: the local LBA request the state list that the GSAnageeps updated
with the state of all the nodes composing the cluster. The @&Sponds to this request providing it
with the required information.

5.3. The initiation agent

This agent is in charge of evaluating the initialisationeruMhen a user intends to execute a task
in a node of the cluster, this request is sent to the IA of tlvaten Once this agent has evaluated the
initialisation rule, it determines if that can be executechlly or if a new load balancing operation has
to be carried out (see Fig. 6).

As for the rest of the agents, its main structure containafimite loop and, for each of these iterations,
the pending tasks in the execution queue are checked. H therpending task, a new assignment task
loop starts. There are two type of messages:

— LOCAL _STATE CHANGE: It receives a message from the local LA to notify araigon the local
state.

— EXECUTE TASK_REQUEST: It requests the execution of a new task. As a taskigposed by a
set of processes, the local execution of one of these presess change the nimbusState of that
node. This is the reason why, when an execution requesteéé/ezt; the IA starts a loop to assign
all the processes of the task. For the first process, the Nitate is checked to corroborate if its
value is equal to Maximum. If so, the node is infra-utilisedldaherefore that process is executed
locally. The same procedure is repeated for the followiragess. This loop finishes when all the
processes have been executed or when its nimbusState mgedhis value. In that moment, a new
balancing operation starts and a message is sent to thd_BAal
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Load Balancing
Agent

Balancer Agent Initiation Agent

(local)

LBA Process
Allecation

Algorithm

Accept / Reject »| Load Balancing

Score Request | Agent
(remote)

Score result

Fig. 7. The load balancing agent.
5.4. The load balancing agent

This agent is responsible for making the load balancing atjmar, strictly speaking. Its structure
contains an infinite loop that is waiting to receive mess&was other agents (see Fig. 7). Its functionality
depends on the messages received, being the possible m&ssag

— BALANCER EXECUTION: This message comes from the local |A @rddicates that a new load
balancing operation needs to start. The LBA executes th@iexsequence of steps introduced by
the CAMT model to find the most suitable nodes and to assign the most suitable process. For
the localization rule, the LBA follows the following sequanof steps:

1. Request the InteractivePool and the states list to thed GBSA.

2. Determine the TaskResolution, analysing which nodesefitteractivePool have their nim-
busState different to Null.

3. Request the score of those processes composing the taslex@cuted to the LBA of the nodes
included in the TaskResolution.

4. Taking into account the TaskResolution and the requestecks, determining the Collabora-
tive_Organization by analysing those nodes that, belongingg@#skResolution, can execute at
least one of the processes of the task.

As for the selection and distribution rule, once the Collaltige Organization has been made up, it is

necessary to determine which processes are sent to each wbdes of the cluster. In order to make

this possible, the algorithm presented in Section 4 has imegiemented. Once all the processes have
been assigned, they are sent to the designated nodes. Tdueseraply with an acceptance or rejection

message. If the process is accepted by the node, the assigafritbe process ends. Otherwise, the

process is pending of assignment and it is added to the néwdéssribed in the previous paragraph.

— REMOTE.EXECUTION: The message received comes from the remote LBiing for the remote
execution of a process. Once the LBA has checked its own #tagplies to the remote LBA with
an acceptance or rejection message. If the process is ad¢dipe operation concludes, the LBA
executes the process locally and it updates its state. Téetimm can be due to a change on its
nimbusState (to Null) which has not been notified yet becatifee network latency.
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Fig. 8. Extended ITS.
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— SCOREREQUEST: This message is a request to the LBA to send thesabaespecific task. The

LBA receives the task and it evaluates the scores for eadhegbitocesses belonging to that task.
These scores have to be calculated in real time, as they eageldynamically. Once they have

been calculated, the LBA sends the current scores to thetednB#\ to execute the selection task.

6. The “Teaching about Madrid” architecture

Our approach to the definition of an architecture for Teaching about Madrid¢ourse is based on

the one defined in [20], a multi-agent architecture for ligeht Virtual Environments for education and
training which uses the traditional structure of an Inggdht Tutoring System (ITS) [21], but extended

with a new module to support the use of multi-user Virtual iEmvments (see Fig. 8).

The system’s architecture has five agents correspondirigetiivie key modules of the extended ITS

architecture:

— A Communication Agenwhich is in charge of communicating the ITS with externaéngsand

software.

— A Student Modelling Agenivhich manages the user modelling tasks.
— A World Agentwhich is in charge of maintaining relevant information abthe VE.
— An Expert Agentwhich maintains information about the subject to be tayighhis case, about the

city of Madrid).

— A Tutoring Agentwhich controls the interaction between the user and thani&ms of tutoring

events.
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Analyzing the responsibilities of these agents, some &hdit roles can be identified that point to the
creation of new, subordinate agents that can carry themsabgsequently giving rise to a hierarchical
multi-agent architecture.

6.1. Communication agent

TheCentral Communication Agerg responsible for the communication between the Virtuaitom-
ment and the Tutoring System. It delegates part of its resipdities to a set of individuaCommunication
Agentsdedicated to each student. There is als@omnection Manager Agenivhich is responsible for
coordinating the connections of the students to the syssm,a set oDevice Agentsn charge of
managing the data provided by the devices the students ursetact with the Virtual Environment.

6.2. Student modeling agent

This agent is in charge of maintaining a model of each stydiecitiding personal information, their
actions in training sessions, and a model of the studentsiledge.

Figuring out the student’s abilities and beliefs/knowledg usually not a trivial issue. To better
individualize training and appropriately understand thelent's behaviour, a representation of some of
its personal features (personality traits, mood or attif)ds defined and maintained. To do this, the
Student Modeling Ageid assisted by:

— A Historic Agentwhich is responsible for registering the history of intgimns among the students
and the system.

— A Psychological Agentwhich is responsible for building a psychological profifeeach student
including their learning style, attentiveness, and ottexsgpnality traits, moods and emotions that
may be interesting for adapting the teaching process.

— A Knowledge Modeling Agentvhich is responsible for building a model of the studentisrent
knowledge and its evolution.

— A Cognitive Diagnostic Agenivhich is responsible for trying to determine the causels@$tudent’s
mistakes.

6.3. World agent

TheWorld Agentis in charge of maintaining a coherent model of the VE, so #lflahe agents and
students have the same information about the state of tHe.wor
TheWorld Agenis related to:

— The 3D Geometrical Information Agemthich has geometrical information on the objects and the
inhabitants of the world. Among other responsibilitiess thgent will answer questions about the
location of the objects.

— The Objects and Inhabitants Information Agemthich has semantic knowledge about the objects
and the inhabitants of the world.

— The Path-Planning Agentwhich is capable of finding paths to reach a destinationtpairthe
environment avoiding collisions with other inhabitantslabjects. With the aim of finding paths,
the A* algorithm is applied to a graph model of the environtmen
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6.4. Expert agent

The Expert Agentontains the expert knowledge about the environment tHagiisg taught, as well
as the expert knowledge necessary to solve the problemsd posiee student and to reach the desired
goals.

The Expert Agentdelegates some of its responsibilities tdSanulation Agentthat contains the
knowledge about the simulated system, arRlanning Agentthat is able to find the best sequence of
actions to solve different activities.

6.5. Tutoring agent

It is responsible for proposing activities to the studentenitoring their actions in the virtual envi-
ronment, checking if they are valid or not with respect topken worked out by th&xpert Agentand
making tutoring decisions. The activities that can be psepldy theTutoring Agentare dependent on
the particular environment that is being simulated in the ®i&d they can be defined by means of an
authoring tool.

The adaptation of the tutoring strategy to every particsfadent may also encompass how the virtual
tutor behaves: a student may need a tutor with a particukmacter (e.g., training children may require
a funny, enthusiastic tutor), or with a specific mood (efga, $student does not pay much attention for
too long, a disgusted tutor may be effective). Poor or upgettitor behaviors will lead to a lack of
believability, reducing the student’s feeling of preseand the effectiveness of the training.

7. MAS integration

Since the presented application is supported by two diftengulti-agent systems, some degree of
integration has been necessary in order for the Teachingt &bedrid course to behave correctly.

At this stage, the integration has been made at a technaldgiel, so that both MAS are implemented
using the same platform, but they basically run as sepastséms. This decision has been made in
order for the ITS not to interfere with CAMT, since our firstjettive was to evaluate how CAMT could
improve the rendering performance (see Section 8).

Once this has been tested, there are several aspects thiatlgreo be improved using CAMT, being
the most important of them the planning task that has to bfoeed by the Planning Agent, since
planning is a task that typically presents an exponentiaexity.

Therefore, both MAS run in different nodes, and each of thesiits own directory, communication
channels and the like. For the moment, the rendering tasknpesd by CAMT is only affected by the
rendering effects caused by the decisions that the ITS makelswhich may have an impact on what
the user sees.

8. CAMT evaluation on the “Teaching about Madrid course”

One of the goals of the “Teaching about Madrid” course is gaclion the generation of realistic
renderings of complex 3D models. The visualization of thigtof scenarios within a CAVE environment
must be accomplished at certain frame rates in order toroltEractivity and inmmersion sensations.

The CAVE consists of 4 projectors, each of which is connetdeal different PC that is in charge of
the rendering of the scenario from a different point of vielle visualization is performed using an
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Fig. 9. Puerta del Sol of Madrid.

active stereo system with projectors that work at 100 Hz ,nimggthat these PCs ideally should be able
to generate 100 images per second. However, the high coitypdéxhe geometrical model and realistic
rendering techniques, together with other highly demampdomputations, such as collision detection,
can overflow the computational capacity of these PCs. Irctidg, users can perceive a gap between two
consecutives images and therefore the scenario’s realigitha user’s feeling of immersion decreases
considerably.

The factthat the rendering task can be splitup in severagases which can be executed independently,
makes the CAMT model be a feasible approach for improvingTeaching about Madrid” performance
through the execution of the rendering task in a high-peréorce cluster.

The selected cluster is made up of 40 PCs (nodes) clusteecteththrough a 1.1 Gbps Myrinet
Network. Each cluster node is a 2 GHz AMd K7 processor withi[dBof main memory and 256 KB of
cache memory. The PC operating system is Red Hat Linux 7.8.CAMT model has been developed
using GNU tools and LAM/MPI 7.1.1 Library.

The integration of the CAMT model in order to improve the peniance of the rendering stage can
also introduce some penalization due to the load balanesigst This overhead has been evaluated for
three scenarios of different geometrical complexity: T@&eal (see Fig. 10), Puerta del Sol (see Fig. 9)
and Palacio Real (see Fig. 14).

Figures 11, 12 and 13 show the results obtained evaluatingwbrhead introduced by CAMT while
it assigns the processes to the nodes of the cluster.

As it can be observed, the overhead incurred by the algotittamsign a process doesn't interfere with
the frame rate of the CAVE'’s projectors. The overhead remaimost constant for all of the tasks and
processes even though it increases as the geometricalexitglf the scenario — and therefore the data
file size — also increases, demonstrating that the CAMT dlgurhas been endowed with very strong
scalability features.

9. Conclusions

This paper presents the integration of two previous reseancks. The first of these two projects is an
agent-based guided course, named “Teaching about Madich is intended to provide students with
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Fig. 10. Teatro Real.

Overhead of CAMT in the Teatro Real scenario
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Fig. 11. CAMT overhead in the Teatro Real.

a cultural interactive background of Madrid. The second @&MT, manages awareness of interaction
in collaborative distributed systems, through a multissigerchitecture, to allow autonomous, efficient
and independent task allocation in the environment.

The CAMT model complements the “Teaching about Madrid” seuas it selects the best processor
to make the complex render task of each of the images of theseau the cluster. CAMT divides the
render task of each of these images into a set of independmrggses which are assigned to the most
suitable nodes in the cluster. Thus, even though the gemalatrodel and the illumination algorithms
are complex, practically none of the images are lost, andsuk® 't perceive a gap between consecutives
images, feeling a high degree of realism and immersion.

The integration of both systems, from a technological pofntiew, shows that the “Teaching about
Madrid” course has greatly benefitted from such an integmatind so further integration will be carried
outin order to improve the efficiency of the ITS.

Finally, the experimental results presented in this pagenahstrate that the overhead incurred by
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Overhead of CAMT in the Puerta del Sol Scenario
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Fig. 12. CAMT overhead in the Puerta del Sol.

Overhead of CAMT in the Palacio Real Scenario

_
o N

Microseconds

o N A O @

0 200 400 600 800 1000 1200

Number of Images

Fig. 13. CAMT overhead in the Palacio Real.

the algorithm to assign a process doesn't interfere withfidume rate of the CAVE'’s projectors, and
therefore we can conclude that CAMT complements succég#fie teaching course.
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