
UCM Submission to the Surface Realization Challenge

Pablo Gervás
Universidad Complutense de Madrid / Ciudad Universitaria, 28040 Madrid, Spain

pgervas@sip.ucm.es

1 Introduction

This document describes the surface realization so-
lution submitted by UCM to the Surface Realization
Challenge. The UCM submission operates over the
shallow representation of the challenge input. This
submission to the surface realization challenge relies
on an old-fashioned surface realizer based on unifi-
cation with a grammar. Because this surface realizer
requires fully specified inputs, a complex conversion
process is required from the challenge input to the
data that needs to be provided to the realizer. Where
the challenge input is underspecified, the conversion
process must provide any information that is missing
from the input.

2 The TAP SurReal Surface Realizer

The UCM submission to the surface realization chal-
lenge relies on the TAP framework previously used
for the Referring Expression Generation Challenge
2008 (Gervás et al., 2008) and 2009 (Hervás and
Gervás, 2009). TAP (Text Arranging Pipeline) is
a Java API for generating simple fluent text from a
Java application. TAP is not itself a surface real-
izer. Instead it relies on existing surface realizers to
carry out its task. The current TAP implementation
is configured to rely on the SurReal surface realizer.
The SurReal (SURface REALizer) implementation
provides a lightweight partial Java implementation
of the surface realization mechanisms of FUF de-
scribed in Elhadad (Elhadad, 1993). SurReal relies
on a grammar which is unified with the input. This
grammar follows the conventions of the FUF gram-
mar in Elhadad (Elhadad and Robin, 1996), but it is

currently a much more simplified version than the
original in its scope.

The TAP SurReal combination employed here
was developed to provide a light weight surface real-
izer for Spanish, with particular features intended to
facilitate the generation of literary texts (such as ex-
plicit control of construct placement within the sen-
tence). For the submission described here an ini-
tial sketchy grammar for English has been expanded
as required to match the demands presented by the
challenge input. In spite of the effort invested, cov-
erage may still be significantly improved.

3 Converting the Challenge Input

The challenge input data for the shallow represen-
tation consists of unordered syntactic dependency
trees. Each word and punctuation marker from the
original sentence is represented as a node.

An initial stage of preprocessing is applied to
eliminate nodes that are not useful to the surface re-
alizer. These include most of the punctuation signs
(colons and interrogation and exclamation marks are
retained as they may provide relevant information).
The additional marks for indicating which nodes fall
inside quotations or brackets are also eliminated, as
no method has been found to make use of the infor-
mation they provide (in the limited amount of time
alloted to ponder this issue).

Proper nouns that include nodes of the form
NAME * (with the * a number indicating their rel-
ative ordering) are collapsed into single NNP node
with a string for the full name (in the order indi-
cated).

The differences in nature between these depen-



dency trees and the input accepted by the surface
realizer implies that the set of children nodes of
any given node in a tree needs to be grouped into
subsets that correspond to different subconstituents.
Some of the information implicit in the surface form
needs to be made explicit (such as agreement values
for pronouns, or tense for clauses). Once this im-
plicit information is explicit, the corresponding sur-
face forms can be eliminated. These process is car-
ried out by a set of hand-crafted tree rewriting rules.
Rules rewrite, trim or relocate subtrees matching a
given pattern, while respecting the rest of the tree
(to ensure that a single abstract rule can cover a set
of common cases in spite of ancillary local differ-
ences).

Due to the complexity of the task, at the time of
writing only a limited set of such rules has been de-
veloped. Although an effort has been made to ad-
dress the most generic constructions first, these rules
fall short of covering the complete set of linguistic
constructions available in the development data. The
rules also fail to cover the full set of constructions
that the realizer is capable of producing.

Although the shallow representation does have in-
formation on tense for specific nodes corresponding
to verbs, the tense for each clause needs to be ab-
stracted from the combination of tenses and the rel-
ative position of the various verb forms that make up
the full verb phrase involved.

The explicit representation of pronouns in the
shallow representation needs to be converted into the
set of features that characterise them (person, num-
ber, gender).

Once the input trees have been rewritten to slim-
mer versions, a separate module converts them into
suitable input for the realizer, using the TAP API.

Where the conversion process has failed to pro-
duce from the input successful data for the realizer,
strings of the form “XXX*” has been introduced
as place holders. Where the process resulted in no
string, a place holder is required by the automation
script, so the word “no” has been used.

4 Results over Development Data

The results obtained for the development data are re-
ported on Table 1. These results are copied directly
from the output of a version of the first automated

BLEU 0.23791
BLEU (complete) 0.23791
Avg. BLEU 0.26100
Avg. BLEU (complete) 0.26100
NIST 2.59462
NIST (complete) 2.59462
Avg. NIST 4.48897
Avg. NIST (complete) 4.49331
METEOR 0.23061
Avg. METEOR 0.23061

Table 1: Single best results over development data

script provided, adapted to run on a Windows ma-
chine.

5 Discussion

The expected text provided with the development
data is only used to provide feedback during the
manual process of constructing the rewritting rules.
This is a disadvantage with respect to alternative so-
lutions capable of learning from the combination of
input and expected text result.

The reported results constitute a measure of the
coverage achieved by the input conversion process
more than a measure of the capabilities of the real-
izer employed.

The TAP-SURREAL realizer provides rich fea-
tures for controlling relative position of element
within the sentence, however, as no information on
relative position of elements in a sentence (other
than for proper noun constructions) was available in
the initial input data, the issue of relative position
within the sentence has not been considered. The
supplementary data with information on word posi-
tion became available at too late a stage to be con-
sidered.

Acknowledgments

The research reported in this paper was research is
partially supported by the Ministerio de Educación y
Ciencia (TIN2006-14433-C02-01, TIN2009-14659-
C03-01). Many thanks to Dominic Espinosa for his
help in getting the automated evaluation scripts to
run on a Windows machine.



References
M Elhadad and J Robin. 1996. An overview of SURGE:

a reusable comprehensive syntactic realization compo-
nent. Technical Report 96-03, Department of Com-
puter Science, Ben Gurion University.

M Elhadad. 1993. FUF: The universal unifier. user
manual, version 5.2. Technical Report CUCS-038-91,
Columbia University.

P. Gervás, R. Hervás, and C. León. 2008. NIL-
UCM: Most-Frequent-Value-First Attribute Selection
and Best-Scoring-Choice Realization. In Referring
Expression Generation Challenge 2008, Proc. of the
5th International Natural Language Generation Con-
ference (INLG’08).

Raquel Hervás and Pablo Gervás. 2009. Evolution-
ary and case-based approaches to REG: NIL-UCM-
EvoTAP, NIL-UCM-ValuesCBR and NIL-UCM-
EvoCBR. In Proceedings of the 12th European Work-
shop on Natural Language Generation (ENLG 2009),
pages 187–188, Athens, Greece, March. Association
for Computational Linguistics.


