
Kill the Dragon and Rescue the Princess:
Designing a Plan-based Multi-agent Story Generator

Iván M. Laclaustra, José L. Ledesma, Gonzalo Méndez, Pablo Gervás
Facultad de Informática

Universidad Complutense de Madrid
Madrid, Spain

{ilaclaus, josledes, gmendez, pgervas}@ucm.es

Abstract

We describe a prototype of a story generator that uses a multi-
agent system and a planner to simulate and generate stories.
The objective is to develop a system that is able to produce
a wide range of stories by changing its configuration options
and the domain knowledge. The resulting prototype is a proof
of concept that integrates the simplest pieces that are neces-
sary to generate the stories.

Introduction
When trying to generate stories automatically, it is manda-
tory to research how actual stories work. That, inevitably,
makes you think: “What makes a story interesting?”.

While researching for this project, we realized that in a
story, most of the times, the most important thing is not
WHAT, but HOW things happened. This represents a huge
challenge, since it is difficult to simulate things such as time
(we must be able to simulate time, so that things are not done
immediately), conversations (they have to be fluid, sponta-
neous), and many more. Similarly, there are some actions
that lack interest in themselves, but may have some if com-
bined with others. For example, eating or sleeping, are ac-
tions that may not appear in the final story, but may be wor-
thy of attention if the character meets someone while eating.
Of course, some of the stories generated will just be sets of
facts without any relation or interest, but that is part of the
process.

One of the ways we have for generating stories is by sim-
ulating them. Then, you just have to run the simulation and
see what happens. We achieve this by simulating the sto-
ries using autonomous intelligent agents. Each of the agents
of the story is going to act as a character, which will act
independently from the others, but depending on the story
world’s state. Then stories are generated by “filming” what
these actors do and say. Our main goal for now, is to make a
small Dungeons & Dragons story, which has more than one
ending.

Related Work
The first story telling system for which there is a record is the
Novel Writer system developed by Sheldon Klein (Klein et
al. 1973), which created murder stories within the context of
a weekend party. It relied on a microsimulation model where

the behaviour of individual characters and events were gov-
erned by probabilistic rules that progressively changed the
state of the simulated world (represented as a semantic net-
work). The flow of the narrative arises from reports on the
changing state of the world model. A description of the
world in which the story was to take place was provided as
input. The particular murderer and victim depended on the
character traits specified as input (with an additional random
ingredient). The motives arise as a function of the events
during the course of the story. The set of rules is highly con-
straining, and allows for the construction of only one very
specific type of story. The world representation allows for
reasonably wide modeling of relations between characters.
Causality is used by the system to drive the creation of the
story but it is not represented explicitly.

TALESPIN (Meehan 1977) is a system which tells sto-
ries about the lives of simple woodland creatures. TALE-
SPIN was based on planning: to create a story, a character is
given a goal, and then the plan is developed to solve the goal.
TALESPIN introduces character goals as triggers for action.
Actions are no longer set off directly by satisfaction of their
conditions; an initial goal is set, which is decomposed into
subgoals and events. TALESPIN introduced the possibility
of having more than one problem-solving character in the
story (and it introduced separate goal lists for each of them).
The validity of a story is established in terms of: existence of
a problem, degree of difficulty in solving the problem, and
nature or level of problem solved.

Lebowitz’s UNIVERSE (Lebowitz 1985) modelled the
generation of scripts for a succession of TV soap opera
episodes. It aimed at exploring extended story generation,
a continuing serial rather than a story with a beginning and
an end. It is in a first instance intended as a writer’s aid, with
additional hopes to later develop it into an autonomous sto-
ryteller. The actual story generation process of UNIVERSE
uses plan-like units (plot fragments) to generate plot out-
lines. Plot fragments provide narrative methods that achieve
goals, but the goals considered here are not character goals,
but author goals. This is intended to allow the system to
lead characters into undertaking actions that they would not
have chosen to do as independent agents. The system keeps
a precedence graph that records how the various pending au-
thor goals and plot fragments relate to each other and to
events that have been told already. To plan the next stage



of the plot, a goal with no missing preconditions is selected
and expanded.

The line of work initiated by TALESPIN, based on mod-
eling the behaviour of characters, has led to a specific branch
of storytellers. Characters are implemented as autonomous
intelligent agents that can choose their own actions informed
by their internal states (including goals and emotions) and
their perception of the environment. Narrative is under-
stood to emerge from the interaction of these characters with
one another. This guarantees coherent plots, but, as Dehn
pointed out, lack of author goals implies they are not nec-
essarily very interesting ones. However, it has been found
very useful in the context of virtual environments, where the
introduction of such agents injects a measure of narrative to
an interactive setting.

The Virtual Storyteller (Theune et al. 2003) introduces
a multi-agent approach to story creation where a specific di-
rector agent is introduced to look after a plot. Each agent has
its own knowledge base (representing what it knows about
the world) and rules to govern its behaviour. In particular,
the director agent has basic knowledge about plot structure
(that it must have a beginning, a middle, and a happy end)
and exercises control over agent’s actions in one of three
ways: environmental (introduce new characters and object),
motivational (giving characters specific goals), and proscrip-
tive (disallowing a character’s intended action). The director
has no prescriptive control (it cannot force characters to per-
form specific actions). Theune et al. report non-structural
rules are contemplated, to measure issues such as surprise
and “impressiveness”. The Virtual Storyteller includes a
specific narrator agent, in charge of translating the system
representation of states and events into natural language sen-
tences. The development effort on the narrator seems to have
focused on correct generation of pronouns to make the re-
sulting text appear natural.

The story generator
The objective of this work is to develop a story generator that
can generate different stories using the same initial informa-
tion and that, in addition, can be easily modified to generate
a wider range of stories.

With these objectives in mind, we have developed a first
prototype that works as a proof of concept to test our ap-
proach. This prototype has been developed using very sim-
ple, unsophisticated components with the aim of substituting
them with more complex ones once the feasibility of the so-
lution has been tested.

The generator is structured in four modules, each of them
with their corresponding configuration files: a multi-agent
system, which contains an agent for each character and a
set of managing agents (currently the world agent, the sim-
ulation agent and the director agent), a logger (in charge of
collecting the events of the story), a planner (what the char-
acters use to know what to do), and the world (contains the
map where the characters interact).

The world
The world is basically a map with different locations, con-
nected by paths between them, in order to make the charac-

ters move around it. The prototype we have built has a map
formed by three locations:
• Castle: Where the king and the princess are.
• Village: Where the knight starts at.
• Cave: Dragon’s home.

Since one of our main goals is to make this storyteller easy
to configure, we decided to use text files to load the map and
the objects present in each location. The map is structured
as an XML file that contains a list of locations with pointers
to the locations they are connected to, and the objects and
characters situated there, so it works as a graph.

The multi-agent system
The multi-agent system is implemented using the JADE
(Bellifemine, Caire, and Greenwood 2007) agent platform.
This first prototype generates stories with four types of char-
acters:
• Princess: the character around which the story is built up.
• Dragon: its goal is to kidnap the princess and hold her

prisoner in his cave.
• King: the father of the princess. When his daughter is

kidnapped, his goal is to find a suitable knight and hire
him to kill the dragon. If the knight fails, the king looks
for another one, until the princess is safe and sound back
in her father’s castle.

• Knight: He has no goals until the princess is kidnapped.
From then on, his goal is to kill the dragon and take her
back to her father.
New stories can be created by simply adding more char-

acters of a type, which are specified at the beginning in a
configuration file. In addition, the director agent may create
them if it fits the objectives of the story. For example, cre-
ating more than one knight, when the princess is kidnapped,
the king will look for all the knights available, and will hire
the one with lowest fees.

Each character works as a finite state machine consisting
of one state per behavior type and a “waiting” state where
they are when they don’t have active goals.

The world agent is in charge of managing the map, so
that all the other agents have a consistent view of the world.
Every time a character moves to a new location, he has to
send a message to the world agent, so the map gets updated.

The simulation agent is in charge of managing the result
of the actions that cannot be directly obtained by the planner,
such as the result of the battle between the dragon and the
knight.

Finally, the director agent is the one in charge of creating
all the necessary agents of the story, these being: the world
agent, the simulation agent and the characters. It also makes
the necessary decisions to keep the story going, such as set-
ting new goals for the characters. Currently, these decisions
are hand written in a configuration file, but the purpose is for
this agent to be able to generate them dynamically accord-
ing to certain heuristics or ask the user to suggest what the
new goals should be, in order to make the generator more
interactive.



Planning
Each character’s actions are driven by their own goals,
which are used to plan the sequence of actions they have
to carry out to achieve these goals. At the beginning we
thought of using just one planner to generate the whole story,
but soon it was clear that the planning process would be
costly, that the number of possible stories would be small
and that it would be difficult to obtain valid plans for agents
with conflicting interests. Therefore, we decided it would be
more suitable to use separate planners for each agent, so that
each of them could make their own plans according to their
interests and, in case of conflict, they would have to create
new plans to achieve their goals.

We decided to use a STRIPS-based planner (Fikes and
Nilsson 1971), since it is quite simple and it is a straight-
forward option to generate simple stories. In addition, we
wanted it to work with PDDL (McDermott 1998) so it would
be easy to substitute it with a more sophisticated one in the
future.

With this choice, adding a new character to the story in-
volves the creation of another class with the character and
two PDDL files, one for its actions, and one for its initial
state and goals.

We decided to use the JavaFF planner (Coles et al. 2008)
because it works with PDDL and it is open source. The plan-
ner takes the domain and the problem in PDDL as inputs,
and writes the plan (as a list of actions) into an output file.
Since it is open source, we were able to modify it, in order
to make the planner return a list of actions (the data structure
managed by the planner) instead of writing it to a file. By
just adding new actions to the character’s PDDL file, new
stories are generated, as plans may change including these
new actions.

At the time of writing this paper, agents make their plans
sequentially (one makes its plan and executes it, then the
next one), so that they don’t interfere with each other’s goals
while executing their plans. This reduces the richness of the
generated stories, but it is still a good solution to test the
validity of the proposed solution.

Capturing the events of the story
As we already said, the only important things are not only
the events themselves, so we need a way to gather what hap-
pens in the story, but also what is “said” and in what context.
Namely, we need a log of everything that happens in the
simulation, including the actions that are carried out and the
messages exchanged between the agents. We have used the
log4j library (Gulcu 2003), which allows the user to enable
logging at runtime without modifying the application binary.
It also allows us to decide what to enter the log (in our case,
it would be everything), the layout, what to save in the log
(date, action, agent) and more. Everything is configurable
via a parameters file, and will be saved as a log file.

This log is what enables us to actually know what has
happened in a certain story, what actions were executed and
what was said (scilicet, what messages were interchanged
between the agents). However, we must keep in mind that
not all the exchanged messages are likely to appear in the fi-
nal story. For example, all characters have to send a message

to the world agent when moving, in order to keep the map
updated. These messages should not appear in the story, as
their goal is to guarantee internal consistency.

Results
We have implemented a simple prototype where all the de-
scribed components work together to generate simple, short
variations of a story (in Spanish) where a dragon kidnaps
a princess and her father the king manages to hire a knight
who rescues her and takes her back to her father:

El rey Felipe está preparado.
La princesa Laura despierta.
La princesa sale del castillo.
El dragón Draco emprende el vuelo en busca de alguna

princesa desprotegida.
La princesa Laura ha sido secuestrada.
El rey intenta pedir rescate para la princesa Laura.
El caballero Rafael entra en escena.
El rey intenta pedir rescate para la princesa Laura.
El caballero Rafael busca al dragón Draco.
El dragón Draco ha muerto en batalla.
La princesa Laura fue liberada.
El rey entrega 50 monedas al caballero Rafael.
La princesa llega al castillo con el caballero Rafael.
La princesa Laura pone fin a su aventura.

As far as we have been able to test, it is easy to modify the
world map to add new locations and situate the characters in
them, so they have to make longer journeys to achieve their
goals. It is also easy to add new characters of existing kinds
so, for example, we can add a second dragon that tries to
kidnap the princess from the first one’s den.

To make further changes, such as adding new types of
characters or actions, it is already necessary to modify the
source code of the generator, as well as the domain knowl-
edge, but the code is sufficiently well crafted so that these
changes can be easily made. We still have not tested how
easy it is to generate a story in a different domain, such as a
superheroes story, a western or a love story, but as far as we
can see now it may be more painstaking than difficult.

As of now, the stories we generate consist of all the events
that take place in the simulation, so our current work is fo-
cused on the content extraction, so that we can tell just the
relevant events in a relevant order.

To transform the generated logs into text we are using the
TAP text generator (Gervás 2011) that receives a crafted set
of information and transforms it into an ordered set of sen-
tences that replicates the events that took place in the simu-
lation in the form of a story.

Therefore, in a still simple way, we have developed a story
generator that, by means of simple modifications, is able to
generate a fair amount of different, although related, stories.

Future Work
Some of the goals we had in mind at the beginning of this
project could not be achieved, mostly because of time con-
straints. We describe some of them here, so they can be used
as a starting point for future contributions.



One of the first thing that comes to mind is expanding the
world. As the characters and world we are using now are
very limited, stories generated are just little paragraphs and
there are not many variations between different executions
of the application. Just by adding new locations and new
characters, we will be adding more possibilities to the story
to move along, so that we get more possible stories, which
become more intricate at the same time.

As we said before, at the moment, the characters in our
application work sequentially, for practical reasons. This re-
duces the possibilities of the stories generated, since it is
more difficult for conflicting interests to appear, or for char-
acters to collaborate to achieve a common goal. A good
improvement would be to make all the characters work in
parallel, so they would make their plans based on the initial
state. While executing their plans, the actions of some char-
acters may interfere in the plans and goals of others. There is
when re-planning comes in. Re-planning would make char-
acters interact a lot more, making them compete for the re-
sources to achieve their goals.

In addition, we may want to increase the richness of the
stories by making the characters more complex. Adding a
slight mood to the characters can make possible stories in-
crease significantly, as the same character may have different
behaviors with different moods. Another possibility would
be to add feelings and even personality traits.

A lot of richness can also be added via expanding the map.
Having a sub-map inside every location would make much
more complex plans. Each location can contain different
objects, usable and decorative, so the characters can interact
with them. For example, you could have a dragon which
cannot be killed without a magical sword, so the knight has
to find the hidden key to get it.

A much more difficult (and interesting) goal is to make
the theme of the story configurable. The idea is to create a
configuration file where you can state the theme of the story.
That would make everything more difficult, since you can’t
work with the characters directly. The agents can adopt the
role of “actors”, instead of characters. With that, there would
be a “main character”, an “antagonist”, a “damsel in dis-
tress”, and various “secondary actors” in each story. By do-
ing this, you could include in the theme configuration file the
names of the characters, their mood (if any), their role, how
their actions work (the action “attack” for a knight would
make him use his sword, while for a policeman, it would
make him use his gun), and have a PDDL file of actions for
each role.

Another improvement would be to make the user take the
role of a character, so his decisions affect the final result of
the story. At first, it could work as in conversational ad-
ventures (Montfort 2004), so the user tells the system what
actions to carry out. After that, the system would work just
as it usually does.

Finally, another option is to give the characters the possi-
bility of making up the details of the story. For example, in
our story, the knight could pretend he has a magical weapon
to kill the dragon. This endows the stories generated with a
whole new level of richness, because new facts are created
on the fly.

Acknowledgments*
This paper has been partially supported by the projects
WHIM 611560 and PROSECCO 600653 funded by the Eu-
ropean Commission, Framework Program 7, the ICT theme,
and the Future Emerging Technologies FET program.

References
Bellifemine, F. L.; Caire, G.; and Greenwood, D. 2007.
Developing multi-agent systems with JADE. Wiley series in
agent technology. Wiley.
Coles, A.; Fox, M.; Long, D.; and Smith, A. 2008. Teaching
forward-chaining planning with javaff. In Colloquium on
AI Education, Twenty-Third AAAI Conference on Artificial
Intelligence.
Fikes, R. E., and Nilsson, N. J. 1971. Strips: A new ap-
proach to the application of theorem proving to problem
solving. In Proceedings of the 2Nd International Joint Con-
ference on Artificial Intelligence, IJCAI’71, 608–620. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc.
Gervás, P. 2011. UCM submission to the surface realization
challenge. In Surface Realization Challenge. Challenges
2011 Session at 13th European Workshop on Natural Lan-
guage Generation (ENLG 2011).
Gulcu, C. 2003. The Complete Log4j Manual. QOS.ch.
Klein, S.; Aeschliman, J. F.; Balsiger, D.; Converse, S. L.;
Court, C.; Foster, M.; Lao, R.; Oakley, J. D.; and Smith, J.
1973. Automatic novel writing: A status report. Technical
Report 186, Computer Science Department, The University
of Wisconsin, Madison, Wisconsin.
Lebowitz, M. 1985. Story-telling as planning and learning.
Poetics 14:483–502.
McDermott, D. 1998. PDDL - the planning domain def-
inition language. Technical Report CVC TR-98-003/DCS
TR-1165, Yale Center for Computational Vision and Con-
trol.
Meehan, J. R. 1977. TALE-SPIN, an interactive program
that writes stories. In In Proceedings of the Fifth Interna-
tional Joint Conference on Artificial Intelligence, 91–98.
Montfort, N. 2004. Twisty Little Passages: An Approach to
Interactive Fiction. Cambridge, MA, USA: MIT Press.
Theune, M.; Faas, E.; Nijholt, A.; and Heylen, D. 2003.
The virtual storyteller: Story creation by intelligent agents.
In Proceedings of the Technologies for Interactive Digital
Storytelling and Entertainment (TIDSE) Conference, 204–
215.


