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Abstract 
 

This paper presents a Case-Based Reasoning 
approach for the personalized access and the students’ 
coauthoring tasks in on-line repositories of Learning 
Objects (LOs). The personalized access combines 
content-based filtering techniques together with 
collaborative filtering mechanisms. Students’ 
coauthoring tasks include the incorporation of:  
assessments of the existing LOs, and new LOs which 
are peer reviewed. The approach has been applied to a 
repository with more than 200 programming examples 
written in different programming languages. 
 
 
1. Introduction 
 

Programming skills can only be developed by 
extensive practice. Instructors are conscious of that and 
include many program examples in their lectures. In 
the same way, environments that support example-
based programming teaching, and on-line repositories 
of programming examples, have been developed [1]. 

The abundance of programming LOs available 
poses a new challenge: providing support for locating 
those adapted to the individual knowledge, goals 
and/or preferences of the students.  

Earlier educational example-based environments 
had a very simple interface to select relevant examples 
and supported searching by using keywords that 
appear in the problem statement or in the code itself 
[2] [3]. These tools did not take the current student 
knowledge into account, so they could retrieve 

resources including concepts that the student does not 
know (or even including concepts that she is not ready 
to learn yet). Besides, it should be noticed that the 
problem statement could describe the example goal 
from very different points of view: it could include 
references to specific programming concepts −i.e., 
adding an element to a sorted linked-list− but it could 
describe an equivalent “real-world” problem −i.e., 
adding a new contact to an address book. Clearly, 
retrieval based on keywords when using this second 
(and common) type of example goal description is far 
from being appropriate, what clearly limits the use of 
the approach. 

 More recently, NavEx [4], an evolution of the web-
based tool WebEx [5] for exploring annotated program 
examples developed using the C programming 
language, classifies examples according to the current 
state of the student knowledge and her history of past 
interactions. It applies adaptive navigation to: (a) 
distinguish new examples from examples that have 
already been partially or fully explored, and (b) 
categorize examples as being either “ready to” or “not 
yet ready to” explore according to the current 
knowledge of the student. Finally, NavEx ADVISE [6] 
extends the previous work on NavEx by combining 
adaptive annotation with spatial 2D similarity-based 
visualization. The whole repository of examples is 
displayed on a 2D example map where similar 
examples are placed closer to each other and dissimilar 
examples are placed farther from each other. Each 
example is represented by a vector of concepts from 
the C-programming domain, which are automatically 
extracted from the code itself using a domain-specific 



parser and traditional information retrieval techniques. 
The concept vectors are used to calculate the 
similarities between the examples they represent. 

NavEx ADVISE provides a limited support for 
locating resources adapted to the student current 
learning goal. Given an example currently explored by 
the student, she only receives visual cues about similar 
and dissimilar examples. However, the tool does not 
provides information about neither the concepts shared 
by two examples nor the concepts on which two 
examples differ. So, the student can not easily locate 
examples appropriate for a concrete learning goal. 

In this paper, we describe a general approach for  
providing personalized access to educational 
repositories that adapts to both, the student current 
knowledge and her concrete learning goal. This 
content-based filtering mechanism is supplemented 
with a collaborative filtering process [7] that helps to 
predict the utility that a concrete LO has for a new 
student, based on the assessments (i.e., relevance, 
preferences, opinions) that similar students (students 
with similar goals and knowledge level) have made 
about this LO. The approach has been applied to a 
repository where the LOs are programming examples. 

Hybrid filtering approaches that combine content 
and collaborative aspects have been used in 
recommender systems [8]. But they constitute a  quite 
innovative approach in accessing educational 
repositories. Educational digital libraries rely mainly 
on content-based retrieval [9]. Educational repositories 
that incorporate collaborative filtering employ 
approaches less accurate than the one proposed in our 
work. They take into account the LO assessments 
made by the students independently of their profile. 
This is the case of Knowledge Sea [10], a platform to 
access electronic documents about the C programming 
language that incorporates social navigation support.  

Our proposal of incorporating collaborative 
recommendation capabilities in an educational 
repository requires storing the assessment that a 
student makes about a certain LO together with his 
profile and learning goal (notice that student profile 
and goals evolve in time, so a collaborative filtering 
approach that considers the assessment made by 
similar students should store the profile and the goal 
the student had when she assessed the LO). This 
information can be considered as an extension of the 
initial knowledge stored and represented by the 
instructors that create the repository, which will be 
used to refine the access mechanism and the searching 
results. In this sense, the incorporation of this 
information can be considered as a part of a 
coauthoring process of the students.  

Finally, another important aspect of our approach is 
that the student coauthoring process also considers the 
incorporation of new LOs. So, the repository 
dynamically grows and improves with the student 
collaboration.  

Including all this information has two direct 
advantages. On the one hand, the content and 
organization of the repository is not limited to the 
instructor perspective but is complemented with the 
point of view of the students. On the other hand, 
student motivation could increase because they 
collaborate in the learning process of their colleagues.  

Section 2 presents the approach independently of 
the educational domain. Section 3 briefly describes the 
particularization of the approach to an educational 
repository of programming examples. Last section 
concludes the paper and presents future work. 

 
2. A General View of the Approach 

 
Figure 1 shows the architecture that supports our 

approach. Subsections 2.1 and 2.2 describe the 
components associated with the personalized access 
and the coauthoring process that involves the students. 

The approach has been conceived as a Case-Based 
Reasoning (CBR) one [11]. CBR is a problem-solving 
paradigm that faces a new problem by retrieving past 
cases (experiences) that solve similar problems and 
reusing them in the new problem situation. CBR also is 
an approach to incremental learning that should 
include some maintenance policies [12]. Incorporating 
new cases to the case base is the essential way of 
learning in CBR. Learning retrieval knowledge is also 
a common way to improve the system performance.  

CBR has been applied to diverse domains, from e-
commerce applications to planning systems. In 
particular, CBR techniques have been successfully 
used for developing educational approaches and 
computer-based teaching systems [13][14][15].  

From a CBR point of view the LOs of the 
repository are the fundamental elements (the cases) of 
the knowledge base, the personalized access 
corresponds to the approximate retrieval phase of the 
CBR, and the students’ coauthoring tasks relate to the 
CBR learning phase. We suggest the use of an 
ontology-based indexing scheme of the LOs instead of 
a textual indexing (such as the one used in the tools 
described in Section 1 or in some educational digital 
libraries). The use of automated textual indexing and 
retrieval methods can reduce the resource cataloging 
effort. However, ontology-based cataloging provides a 
general indexing scheme that lets include similarity 
knowledge between concepts, which is a crucial 



knowledge in similarity-based search and ranking 
contexts. Besides, an ontology gathers a common 
parlance that can be used by the various knowledge 
sources (instructors, students) when including new 
LOs, and by the students when querying the tool.  
 
2.1. Personalized access 
 

According to the CBR paradigm, access is 
organized in two steps: location and ranking. 

The location step finds the LOs that satisfy, in an 
approximate way, the student learning goal. The 
student poses a query to the tool by using the concepts 
existing in the domain ontology. This query represents 
her learning goals: the concepts she likes to learn. The 
LOs indexed by the query concepts are retrieved. If 
there are no LOs that satisfy this condition, LOs 
indexed by a subset of the (same or similar) concepts 
specified by the student are retrieved.  

Once LOs are retrieved, they are ranked according 
to the relevance assigned to each LO by a similarity 
metric. Similarity metric computes the relevance of the 
LO X as the sum up of three elements, which are 
intuitively described next (technical details of the 
metric are out of the scope of the paper):  

(a) The relevance due to the goals satisfied by X. 
The higher the number of query concepts that X 
lets learn is, the higher the relevance value is. 
The more similar X concepts and query 
concepts are, the higher the relevance value is.  

(b) The relevance due to the adaptation degree of X 
to the student current knowledge (represented 

by her profile in the ‘student profile 
repository’). The objective is to penalize X if it 
includes concepts (different from those that let 
satisfy the query) that are unknown to the 
student. 

(c) The relevance due to the utility assigned to X by 
other students with goals and profiles similar to 
the current one. The ‘student preference 
repository’ stores the assessments made by the 
students about the LOs they have used, together 
with their goals and profiles when they used 
them. It is not necessary to explore the complete 
student preference repository in order to look 
for similar students, but they are looked for 
among the students that have valued X. This 
reduces the classic bottleneck related to 
collaborative filtering in recommender systems. 

As we can see, the ontology-based indexing scheme 
is crucial for both, the location and the ranking steps. 
 
2.2. Students’ coauthoring tasks 
 

From the CBR point of view, the students’ 
coauthoring facilities considered in our approach let 
learn two types of knowledge: cases and retrieval 
knowledge. 

As stated before, the ‘student preference repository’ 
stores the assessments explicitly assigned by the 
students to the LOs they have used, together with their 
goals and profile when they used them. We agree with 
Brusilovsky et al. [10] and defend an explicit 
collection of student feedback because the information 
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Figure 1. The architecture that supports the approach. 



obtained is more accurate than the one obtained by 
implicit approaches which extract feedback from user 
actions. This way, the collected information is used by 
the ‘ranking component’ in the personalized access 
process and provides a reliable form of collaboratively 
refining the relevance computed for each LO located. 
So, the tool learns knowledge for the CBR retrieval 
phase as an indirect learning of index weights [16]. 

The ‘LO acquisition component’ and the ‘peer 
review component’ participate in the learning of new 
LOs. Students provide new LOs and a tentative set of 
the ontology concepts to index them. The ‘LO 
acquisition component’ stores them in a temporary LO 
repository until the instructor permanently moves them 
to the ‘LO repository’ using the ‘maintenance 
component’. Once they are in the ‘LO repository’ they 
can be accessed. 

We have chosen a manual CBR maintenance policy 
where instructors decide off-line which LOs they 
definitely incorporate into the ‘LO repository’. Once 
more, the students’ point of view complements the 
instructor perspective. A peer review technique allows 
students to examine and to judge the quality of the LOs 
provided by their colleagues. The ‘peer review 
component’ lets students browse the contents of the 
‘temporary LO repository’ or pose a query to look for 
new LOs that relate to concepts they are interested in. 
The students can give ratings, and optionally 
comments, about the new LOs that will be taken into 
account by the instructor in the maintenance process.        

 

3. Applying the Approach to a Repository 
of Programming Examples 

 
The approach described here is nowadays followed 

to provide personalized access and students’ 
coauthoring facilities in a repository of more than 200 
programming examples developed using different 
programming languages (C++, Java, Pascal). The 
examples were originally developed to support 
introductory programming courses in Computer 
Science and Physics at the Complutense University de 
Madrid. Students will use the tool in the second 
semester of this academic year.  

Examples are indexed through an ontology of 
programming concepts that we have developed based 
on existing educational ontologies for procedural and 
object-oriented programming [17][18][19]. The 
ontology has been designed using the ontology editor 
Protégé and formalized in OWL-DL [20]. Figure 2 
shows a partial view of our ontology. 

The use of an indexing scheme based on 
programming concepts that exists in an ontology, 
instead of based on concrete programming instructions 
extracted from the programming code of the example 
solution, helps to separate the example representation 
from the programming style of the example author. On 
the other hand, our ontology is quite independent of 
the programming language. So it is possible to use it 
for indexing examples solved using different 
programming languages. This could be of great help 
when the student is interested in retrieving examples 

 

 
Figure 2. A partial view of the programming ontology (obtained with Protégé facilities). 



developed with different programming languages after 
posing a query. 

The tool will incorporate student model update 
facilities. The student model will be automatically 
updated after the evaluation of the tests that exists for 
every aspect of the course. 

We will try the inclusion of unsolved exercises into 
the LO repository. So, the student could retrieve 
completely solved examples and exercises to solve. 
When retrieving an exercise to solve the tool could 
make a personalized recovery of examples in the 
context of the exercise: examples would be requested 
by the student on demand or the tool could suggest 
examples of its own accord (i.e., if the solution of the 
exercise should include loop sentences and the student 
model shows a low knowledge of loops, the tool could 
suggest examples that include loops in their solution). 

 
4. Conclusions and future work 

 
This paper presents an approach à la CBR for the 

personalized access and the students’ coauthoring tasks 
in on-line repositories of LOs. The personalized access 
combines content-based filtering and collaborative 
filtering mechanisms. Students could extend the tool 
knowledge with two different kinds of information: 
new LOs and their preferences about the existing LOs. 
So, the tool contents and behavior improve with the 
student collaboration. The use of an ontology-based 
indexing scheme is a crucial element in the approach. 

The approach is applied to an on-line repository 
with more than 200 programming examples 
appropriate for Computer Science and Physics non-
major students. As Section 1 shows, the tool introduces 
improvements with respect to the related works.   

Our immediate future work considers three aspects. 
We plan to study the inclusion of automatic CBR 
maintenance policies in the general approach, so 
instructors are free from maintenance tasks. We will 
start the extension of the tool with exercises. And, 
finally, we also plan to make a comprehensive 
evaluation of the tool at the end of the second semester 
of this academic year. 
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