
Personalized Access and Students’ Coauthoring
in Repositories of Learning Objects:

The Case of a Repository of Programming Examples*

* This work has been partially supported by the Spanish Committee of Education and Science project TIN2006-15202-C03-03 and the
Comunidad de Madrid Education Council and Complutense University of Madrid (consolidated research group 910494).

Mercedes Gómez-Albarrán
Dep. Ingeniería del Software e

Inteligencia Artificial
Universidad Complutense de Madrid

albarran@sip.ucm.es

Susana Bautista-Blasco Jorge Carrillo de Albornoz
Facultad de Informática

Universidad Complutense de Madrid
{sbblasco, jorge.carrillodealbornoz@gmail.com}

Abstract

This paper presents a Case-Based Reasoning
approach for the personalized access and the students’
coauthoring tasks in on-line repositories of Learning
Objects (LOs). The personalized access combines
content-based filtering techniques together with
collaborative filtering mechanisms. Students’
coauthoring tasks include the incorporation of:
assessments of the existing LOs, and new LOs which
are peer reviewed. The approach has been applied to a
repository with more than 200 programming examples
written in different programming languages.

1. Introduction

Programming skills can only be developed by
extensive practice. Instructors are conscious of that and
include many program examples in their lectures. In
the same way, environments that support example-
based programming teaching, and on-line repositories
of programming examples, have been developed [1].

The abundance of programming LOs available
poses a new challenge: providing support for locating
those adapted to the individual knowledge, goals
and/or preferences of the students.

Earlier educational example-based environments
had a very simple interface to select relevant examples
and supported searching by using keywords that
appear in the problem statement or in the code itself
[2] [3]. These tools did not take the current student
knowledge into account, so they could retrieve

resources including concepts that the student does not
know (or even including concepts that she is not ready
to learn yet). Besides, it should be noticed that the
problem statement could describe the example goal
from very different points of view: it could include
references to specific programming concepts −i.e.,
adding an element to a sorted linked-list− but it could
describe an equivalent “real-world” problem −i.e.,
adding a new contact to an address book. Clearly,
retrieval based on keywords when using this second
(and common) type of example goal description is far
from being appropriate, what clearly limits the use of
the approach.

 More recently, NavEx [4], an evolution of the web-
based tool WebEx [5] for exploring annotated program
examples developed using the C programming
language, classifies examples according to the current
state of the student knowledge and her history of past
interactions. It applies adaptive navigation to: (a)
distinguish new examples from examples that have
already been partially or fully explored, and (b)
categorize examples as being either “ready to” or “not
yet ready to” explore according to the current
knowledge of the student. Finally, NavEx ADVISE [6]
extends the previous work on NavEx by combining
adaptive annotation with spatial 2D similarity-based
visualization. The whole repository of examples is
displayed on a 2D example map where similar
examples are placed closer to each other and dissimilar
examples are placed farther from each other. Each
example is represented by a vector of concepts from
the C-programming domain, which are automatically
extracted from the code itself using a domain-specific

parser and traditional information retrieval techniques.
The concept vectors are used to calculate the
similarities between the examples they represent.

NavEx ADVISE provides a limited support for
locating resources adapted to the student current
learning goal. Given an example currently explored by
the student, she only receives visual cues about similar
and dissimilar examples. However, the tool does not
provides information about neither the concepts shared
by two examples nor the concepts on which two
examples differ. So, the student can not easily locate
examples appropriate for a concrete learning goal.

In this paper, we describe a general approach for
providing personalized access to educational
repositories that adapts to both, the student current
knowledge and her concrete learning goal. This
content-based filtering mechanism is supplemented
with a collaborative filtering process [7] that helps to
predict the utility that a concrete LO has for a new
student, based on the assessments (i.e., relevance,
preferences, opinions) that similar students (students
with similar goals and knowledge level) have made
about this LO. The approach has been applied to a
repository where the LOs are programming examples.

Hybrid filtering approaches that combine content
and collaborative aspects have been used in
recommender systems [8]. But they constitute a quite
innovative approach in accessing educational
repositories. Educational digital libraries rely mainly
on content-based retrieval [9]. Educational repositories
that incorporate collaborative filtering employ
approaches less accurate than the one proposed in our
work. They take into account the LO assessments
made by the students independently of their profile.
This is the case of Knowledge Sea [10], a platform to
access electronic documents about the C programming
language that incorporates social navigation support.

Our proposal of incorporating collaborative
recommendation capabilities in an educational
repository requires storing the assessment that a
student makes about a certain LO together with his
profile and learning goal (notice that student profile
and goals evolve in time, so a collaborative filtering
approach that considers the assessment made by
similar students should store the profile and the goal
the student had when she assessed the LO). This
information can be considered as an extension of the
initial knowledge stored and represented by the
instructors that create the repository, which will be
used to refine the access mechanism and the searching
results. In this sense, the incorporation of this
information can be considered as a part of a
coauthoring process of the students.

Finally, another important aspect of our approach is
that the student coauthoring process also considers the
incorporation of new LOs. So, the repository
dynamically grows and improves with the student
collaboration.

Including all this information has two direct
advantages. On the one hand, the content and
organization of the repository is not limited to the
instructor perspective but is complemented with the
point of view of the students. On the other hand,
student motivation could increase because they
collaborate in the learning process of their colleagues.

Section 2 presents the approach independently of
the educational domain. Section 3 briefly describes the
particularization of the approach to an educational
repository of programming examples. Last section
concludes the paper and presents future work.

2. A General View of the Approach

Figure 1 shows the architecture that supports our

approach. Subsections 2.1 and 2.2 describe the
components associated with the personalized access
and the coauthoring process that involves the students.

The approach has been conceived as a Case-Based
Reasoning (CBR) one [11]. CBR is a problem-solving
paradigm that faces a new problem by retrieving past
cases (experiences) that solve similar problems and
reusing them in the new problem situation. CBR also is
an approach to incremental learning that should
include some maintenance policies [12]. Incorporating
new cases to the case base is the essential way of
learning in CBR. Learning retrieval knowledge is also
a common way to improve the system performance.

CBR has been applied to diverse domains, from e-
commerce applications to planning systems. In
particular, CBR techniques have been successfully
used for developing educational approaches and
computer-based teaching systems [13][14][15].

From a CBR point of view the LOs of the
repository are the fundamental elements (the cases) of
the knowledge base, the personalized access
corresponds to the approximate retrieval phase of the
CBR, and the students’ coauthoring tasks relate to the
CBR learning phase. We suggest the use of an
ontology-based indexing scheme of the LOs instead of
a textual indexing (such as the one used in the tools
described in Section 1 or in some educational digital
libraries). The use of automated textual indexing and
retrieval methods can reduce the resource cataloging
effort. However, ontology-based cataloging provides a
general indexing scheme that lets include similarity
knowledge between concepts, which is a crucial

knowledge in similarity-based search and ranking
contexts. Besides, an ontology gathers a common
parlance that can be used by the various knowledge
sources (instructors, students) when including new
LOs, and by the students when querying the tool.

2.1. Personalized access

According to the CBR paradigm, access is
organized in two steps: location and ranking.

The location step finds the LOs that satisfy, in an
approximate way, the student learning goal. The
student poses a query to the tool by using the concepts
existing in the domain ontology. This query represents
her learning goals: the concepts she likes to learn. The
LOs indexed by the query concepts are retrieved. If
there are no LOs that satisfy this condition, LOs
indexed by a subset of the (same or similar) concepts
specified by the student are retrieved.

Once LOs are retrieved, they are ranked according
to the relevance assigned to each LO by a similarity
metric. Similarity metric computes the relevance of the
LO X as the sum up of three elements, which are
intuitively described next (technical details of the
metric are out of the scope of the paper):

(a) The relevance due to the goals satisfied by X.
The higher the number of query concepts that X
lets learn is, the higher the relevance value is.
The more similar X concepts and query
concepts are, the higher the relevance value is.

(b) The relevance due to the adaptation degree of X
to the student current knowledge (represented

by her profile in the ‘student profile
repository’). The objective is to penalize X if it
includes concepts (different from those that let
satisfy the query) that are unknown to the
student.

(c) The relevance due to the utility assigned to X by
other students with goals and profiles similar to
the current one. The ‘student preference
repository’ stores the assessments made by the
students about the LOs they have used, together
with their goals and profiles when they used
them. It is not necessary to explore the complete
student preference repository in order to look
for similar students, but they are looked for
among the students that have valued X. This
reduces the classic bottleneck related to
collaborative filtering in recommender systems.

As we can see, the ontology-based indexing scheme
is crucial for both, the location and the ranking steps.

2.2. Students’ coauthoring tasks

From the CBR point of view, the students’
coauthoring facilities considered in our approach let
learn two types of knowledge: cases and retrieval
knowledge.

As stated before, the ‘student preference repository’
stores the assessments explicitly assigned by the
students to the LOs they have used, together with their
goals and profile when they used them. We agree with
Brusilovsky et al. [10] and defend an explicit
collection of student feedback because the information

New LO

Student profile
repository

Student preference
repository

LO repository Temporary
LO repository

Student Student

Query

Query

Ratings

Ranked
LOs

Retrieved
LOs

Domain ontology

Approximate retrieval phase
of the CBR

LO personalized access Students’ coauthoring tasks

Learning phase
of the CBR

Instructors

Figure 1. The architecture that supports the approach.

obtained is more accurate than the one obtained by
implicit approaches which extract feedback from user
actions. This way, the collected information is used by
the ‘ranking component’ in the personalized access
process and provides a reliable form of collaboratively
refining the relevance computed for each LO located.
So, the tool learns knowledge for the CBR retrieval
phase as an indirect learning of index weights [16].

The ‘LO acquisition component’ and the ‘peer
review component’ participate in the learning of new
LOs. Students provide new LOs and a tentative set of
the ontology concepts to index them. The ‘LO
acquisition component’ stores them in a temporary LO
repository until the instructor permanently moves them
to the ‘LO repository’ using the ‘maintenance
component’. Once they are in the ‘LO repository’ they
can be accessed.

We have chosen a manual CBR maintenance policy
where instructors decide off-line which LOs they
definitely incorporate into the ‘LO repository’. Once
more, the students’ point of view complements the
instructor perspective. A peer review technique allows
students to examine and to judge the quality of the LOs
provided by their colleagues. The ‘peer review
component’ lets students browse the contents of the
‘temporary LO repository’ or pose a query to look for
new LOs that relate to concepts they are interested in.
The students can give ratings, and optionally
comments, about the new LOs that will be taken into
account by the instructor in the maintenance process.

3. Applying the Approach to a Repository
of Programming Examples

The approach described here is nowadays followed

to provide personalized access and students’
coauthoring facilities in a repository of more than 200
programming examples developed using different
programming languages (C++, Java, Pascal). The
examples were originally developed to support
introductory programming courses in Computer
Science and Physics at the Complutense University de
Madrid. Students will use the tool in the second
semester of this academic year.

Examples are indexed through an ontology of
programming concepts that we have developed based
on existing educational ontologies for procedural and
object-oriented programming [17][18][19]. The
ontology has been designed using the ontology editor
Protégé and formalized in OWL-DL [20]. Figure 2
shows a partial view of our ontology.

The use of an indexing scheme based on
programming concepts that exists in an ontology,
instead of based on concrete programming instructions
extracted from the programming code of the example
solution, helps to separate the example representation
from the programming style of the example author. On
the other hand, our ontology is quite independent of
the programming language. So it is possible to use it
for indexing examples solved using different
programming languages. This could be of great help
when the student is interested in retrieving examples

Figure 2. A partial view of the programming ontology (obtained with Protégé facilities).

developed with different programming languages after
posing a query.

The tool will incorporate student model update
facilities. The student model will be automatically
updated after the evaluation of the tests that exists for
every aspect of the course.

We will try the inclusion of unsolved exercises into
the LO repository. So, the student could retrieve
completely solved examples and exercises to solve.
When retrieving an exercise to solve the tool could
make a personalized recovery of examples in the
context of the exercise: examples would be requested
by the student on demand or the tool could suggest
examples of its own accord (i.e., if the solution of the
exercise should include loop sentences and the student
model shows a low knowledge of loops, the tool could
suggest examples that include loops in their solution).

4. Conclusions and future work

This paper presents an approach à la CBR for the

personalized access and the students’ coauthoring tasks
in on-line repositories of LOs. The personalized access
combines content-based filtering and collaborative
filtering mechanisms. Students could extend the tool
knowledge with two different kinds of information:
new LOs and their preferences about the existing LOs.
So, the tool contents and behavior improve with the
student collaboration. The use of an ontology-based
indexing scheme is a crucial element in the approach.

The approach is applied to an on-line repository
with more than 200 programming examples
appropriate for Computer Science and Physics non-
major students. As Section 1 shows, the tool introduces
improvements with respect to the related works.

Our immediate future work considers three aspects.
We plan to study the inclusion of automatic CBR
maintenance policies in the general approach, so
instructors are free from maintenance tasks. We will
start the extension of the tool with exercises. And,
finally, we also plan to make a comprehensive
evaluation of the tool at the end of the second semester
of this academic year.

5. References

[1] M. Gómez-Albarrán, “The Teaching and Learning of
Programming: A Survey of Supporting Software Tools”, The
Computer Journal, 48(2), 2005, pp. 130-144.
[2] L.R. Neal, “A System for Example-Based
Programming”, Proc. Human Factors in Computing Systems
Conference, ACM Press, New York, 1989, pp. 63-68.
[3] J.M. Faries, and B.J. Reiser, “Access and Use of
Previous Solutions in a Problem Solving Situation”, Proc.

Annual Conf. of the Cognitive Science Society, Laurence
Erlbaum Associates, New Jersey, 1988, pp. 433-439.
[4] M. Yudelson, and P. Brusilovsky, “NavEx: Providing
Navigation Support for Adaptive Browsing of Annotated
Code Examples”, Proc. Int. Conf. on Artificial Intelligence
in Education, IOS Press, Amsterdam, 2005, pp. 710-717.
[5] P. Brusilovsky, “WebEx: Learning from Examples in a
Programming Course”, Proc. World Conference of the WWW
and Internet, AACE Press, New York, 2001.
[6] P. Brusilovsky, J. Ahn, T. Dumitriu, and M. Yudelson,
“Adaptive Knowledge-Based Visualization for Accessing
Educational Examples”, Proc. Information Visualization
Conference, IEEE, New York, 2006, pp. 142-147.
[7] U. Shardanand and P. Maes, “Social Information
Filtering: Algorithms for Automating "Word of Mouth"”,
Proc. Conf. on Human Factors in Computing Systems, vol. 1,
ACM, New York, 1995, pp. 210-217.
[8] K. Wei, J. Huang, and S. Fu, “A Survey of E-Commerce
Recommender Systems”, Proc. Int. Conf. on Service Systems
and Service Management, 2007, pp. 1-5.
[9] C. Lagoze, W. Arms, S. Gan, et al., “Core services in the
architecture of the national science digital library (NDSL)”,
Proc. ACM/IEEE-CS Conference on Digital libraries, ACM,
New York, 2002, pp. 201-209.
[10] P. Brusilovsky, R. Farzan, and J. Ahn,
“Comprehensive Personalized Information Access in an
Educational Digital Library”, Proc. ACM/IEEE-CS Conf. on
Digital Libraries, ACM, New York, 2005, pp. 9-18.
[11] A. Aamodt, and E. Plaza, “Case-Based Reasoning:
Foundational Issues, Methodological Variations, and System
Approaches”, AI Communications, 7(1), 1994, pp. 39-59.
[12] D.C. Wilson, and D.B. Leake, “Maintaining Case-
Based Reasoners: Dimensions and Directions”,
Computational Intelligence, 17(2), 2001, pp. 196–213.
[13] D.C. Edelson, “Learning from Questions and
Cases: The Socratic Case-Based Teaching Architecture”, The
Journal of the Learning Sciences, 5, 1996, pp. 357-410.
[14] G. Jiménez-Díaz, M. Gómez-Albarrán, and P.A.
González-Calero, “UnderFrame: Understanding Object-
Oriented Frameworks Using a Case-Based Teaching
Approach”, Poster Session at the European Conference on
Object-Oriented Programming, 2004.
[15] J.L. Kolodner, M.T. Cox, and P.A. González-
Calero, “Case-Based Reasoning-Inspired Approaches to
Education”, The Knowledge Engineering Review, 20(3),
2005, pp. 299-304.
[16] P. Gomes, and C. Bento, “Learning User
Preferences in Case-Based Software Reuse”, Proc. European
Workshop on Case-Based Reasoning, Springer, Berlin, 2000,
pp. 112-123.
[17] S. Sosnovsky, and T. Gavrilova, “Development of
Educational Ontology for C-Programming”, Information
Theories & Applications, 13(4), 2006, pp. 303-307.
[18] Java Ontology of AES Personal Reader for
eLearning: http://personal-reader.de/rdf/java_ontology.rdf.
[19] C Programming Ontology: http://www.sis.pitt.edu/
~paws/ont/c_programming.rdfs.
[20] OWL web site: http://www.w3.org/TR/owl-
features.

