
Case Retrieval Nets for Heuristic Lexicalization

in Natural Language Generation

Raquel Hervás and Pablo Gervás

Departamento de Sistemas Informáticos y Programación
Universidad Complutense de Madrid, Spain
raquelhb@fdi.ucm.es,pgervas@sip.ucm.es

Abstract. In this paper we discuss the use of Case Retrieval Nets, a par-
ticular memory model for implementing case-base reasoning solutions, for
implementing a heuristic lexicalisation module within a natural language
generation application. We describe a text generator for fairy tales im-
plemented using a generic architecture, and we present examples of how
the Case Retrieval Net solves the Lexicalization task.

1 Introduction

Natural Language Generation (NLG) is divided into various specific tasks [1],
each one of them operating at a different level of linguistic representation (dis-
course, semantics, lexical,...). NLG can be applied in domains where communi-
cation goals and features of generated texts are diverse, from transcription into
natural language of numerical contents [2] to literary texts generation [3].

Each kind of NLG application may need a different division into modules
[4]. Given a specific organization (or architecture) of the system, it may occur
that diverse classes of application require different solutions when facing each
of the specific tasks involved in the generation process. For a particular task, in
processes where a quick answer is required (for instance, in interactive commu-
nication between user and machine in real time) it can be useful to use simple
solutions based on heuristics, that provide quick answers even if the achieved
quality is poor. On the other hand, in situations where long texts of high quality
are needed with no constraints on response time it would be better to draw on
knowledge-based techniques that exhaustively consider more possibilities.

The present paper proposes a case-based approach to decide which words
should be used to pick out or describe particular domain concepts or entities
in the generated text. The idea is that people do not create new words each
time they need to express an idea not used before, but rather they appeal to the
lexicon they have acquired throughout time looking for the best way to express
the new idea, always taking into account existing relations between the elements
of the lexicon they already know.

The paper starts with a revision of the Case-Based Reasoning and Lexicaliza-
tion fields. Then we expose the fairy tale text generator where the work presented
in this paper is implemented, and we consider the performance of the CBR mod-
ule. Finally, the obtained results and future research lines are discussed.

2 Lexicalisation and Case Based Reasoning

Lexicalisation is the process of deciding which specific words and phrases should
be chosen to express the domain concepts and relations which appear in the mes-
sages [1]. The most common model of lexicalisation is one where the lexicalisation
module converts an input graph whose primitives are domain concepts and re-
lations into an output graph whose primitives are words and syntactic relations.
Lexicalisation researchers have developed powerful graph-rewriting algorithms
which use general “dictionaries” that relate domain primitives and linguistic
primitives. Graph-rewriting lexical choice is most useful in multilingual genera-
tion, when the same conceptual content must be expressed in different languages.
The technique handles quite naturally some kinds of lexical divergences between
languages. This scheme can be valid for most applications where the domain is
restricted enough in order that direct correspondence between the content and
the words to express it is not a disadvantage. In general, thinking on more ex-
pressive and versatile generators, this model requires some improvement. Cahill
[5] differentiates between “lexicalization” and “lexical choice”. The first term is
taken to indicate a broader meaning of the conversion of something to lexical
items, while the second is used in a narrower sense to mean deciding between lex-
ical alternatives representing the same propositional content. Stede [6] proposes
a more flexible way of attaching lexical items to configurations of concepts and
roles, using a lexical option finder that determines the set of content words that
cover pieces of the message to be expressed. These items may vary in seman-
tic specificity and in connotation, also including synonyms and nearsynonyms.
From this set, the subsequent steps of the generation process can select the most
preferred subset for expressing the message.

Machine learning techniques have been shown to significantly reduce the
knowledge engineering effort for building large scale natural language processing
(NLP) systems: they offer an automatic means for acquiring robust solutions
for a host of lexical and structural disambiguation problems. A good review of
how they have been applied in the past to specifical NLP tasks is available in
[7]. Among the learning algorithms that have been used successfully for natural
language learning tasks are case based learning methods where the natural lan-
guage system processes a text by retrieving stored examples that describe how
similar texts were handled in the past. Case based approaches have been applied
to stress acquisition [8], word sense disambiguation [9] and concept extraction
[10], among others.

Case-based Reasoning (CBR) [11] is a problem solving paradigm that uses the
specific knowledge of previously experienced problem situations. Each problem
is considered as a domain case, and a new problem is solved by retrieving the
most similar case or cases, reusing the information and knowledge in that cases
to solve the problem, revising the proposed solution, and retaining the parts of
this experience likely to be useful for future problem solving. General knowledge,
understood as general domain-dependent knowledge, usually plays a part in this
cycle by supporting the CBR processes.

Case Retrieval Nets (CRNs) [12] are a memory model developed to improve
the efficiency of the retrieval tasks of the CBR cycle. They are based on the
idea that humans are able to solve problems without performing an intensive
search process, but they often start from the given description, consider the
neighbourhood, and extend the scope of considered objects if required.

As its name indicates, CRNs organize the case base as a net. The most
fundamental item in the context of the CRNs are so-called Information Entities
(IEs). These represent any basic knowledge item in the form of an attribute-value
pair. A case then consist of a set of such IEs, and the case base is a net with
nodes for the entities observed in the domain and additional nodes denoting the
particular cases. IE nodes may be connected by similarity arcs, and a case node
is reachable from its constituting IE nodes via relevance arcs. Different degrees
of similarity and relevance are expressed by varying arcs weights. Given this
structure, case retrieval is carried out by activating the IEs given in the query
case, propagating this activation according to similarity through the net of IE
nodes, and collecting the achieved activation in the associated case nodes.

Fig. 1. An Example Case Retrieval Net in the domain of travel agencies

An example of a Case Retrieval Net applied to the domain of travel agencies
is shown in Figure 1. Rectangles represent entity nodes, with their correspond-
ing attribute-value pairs. Hexagons are case nodes, with the description that
identifies them univocally. Entity nodes are related among themselves with arcs
with black arrowheads, and they are related with cases by arcs with white ar-
rowheads. Weights associated to arcs are not represented in the figure, and arcs
with weight zero are ommitted.

Case Retrieval Nets present the following important features:

– CRNs can handle partially specified queries without loss of efficiency, in
contrast to most case retrieval techniques that have problems with partial
descriptions.

– Case retrieval can be seen as case completion. Given only a part of a case,
the net can complete the rest of its content.

– The net can express different similarity and relevance values at run time by
simply changing the related arc weights, while most other techniques need a
new compilation to do the same.

– Cases do not need to be described by attribute vectors. There are features
that would be relevant for some cases but not for the others.

– Insertion of new cases (even with new attributes) can be performed incre-
mentally by injecting new nodes and arcs.

3 Text Generation for Fairy Tales

ProtoPropp [13] is a system for automatic story generation that reuses existing
stories to produce a new story that matches a given user query. ProtoPropp
receives a query from the user with the features the generated story must fulfill
from the point of view of main characters, some important events that may occur,
etc. The system uses this information to look for in its case base of analyzed
and annotated fairy tales by means of Case-Based Reasoning (CBR). A plot
plan is generated by the CBR module, structured in terms of specific instances
of concepts in the ontology (characters and their attributes, scenarios where
the action takes place, events that occurs,...). From this plot plan, the NLG
subsystem builds the textual rendition of the story.

The specific architecture of the NLG module presented here is implemented
using cFROGS [14], a framework-like library of architectural classes intended
to facilitate the development of NLG applications. It is designed to provide
the necessary infrastructure for developing NLG applications, minimising the
implementation effort by means of schemas and generic architectural structures
commonly used in this kind of systems.

cFROGS identifies three basic design decisions when designing the architec-
ture of any NLG system: (1) what set of modules or tasks compound the system,
(2) how control should flow between them, deciding the way they are connected
and how the data are transferred from one to another, and (3) what data struc-
tures are used to communicate between the modules. Our solutions for these
three decisions in the NLG module of ProtoPropp are the following.

3.1 Data structures

Abstract classes provided by the library allow us to create the data structures we
need in our system, always taking into account that all modules must be able to
work with them when necessary. A generic data structure is defined for the text
that is being created, where all obtained information during system operation
is stored. Any module can access all the information accumulated during the
processing of the tale being treated.

Three particular inputs to the NLG module are relevant to the work described
here: the knowledge base, the vocabulary and the plot plan.

The knowledge base contains all the domain information about tales the
generator can consult and use, organized as a tree. This information includes
characters, locations, objects, relations between them and their attributes.

The vocabulary contains all the lexical information essential to write the final
text. It is structured as a tree as well, very similar to the knowledge base one,
with the difference that each fact or relation has a lexical tag associated to its
eventual realization in the final text.

The plot plan is the structure of the tale that is to be rendered as text.
Each line of this input corresponds to a paragraph sized portion of the story,
containing information about a sequence of actions, the place where they take
place, the characters involved, and the objects used in them.

3.2 Set of modules

The NLG system is composed of five different modules:

– ContentDeterminationStory. Decides what facts of the original plot plan
are going to be included in the final text. Taking into account the “historical
register” of the information already mentioned we can decide what informa-
tion is redundant and erase it.

– DiscoursePlanningStory. The discourse planning stage has to organise
all the information that has been selected as relevant into a linear sequence,
establishing the order in which it is going to appear in the final text. The
output of this module is the rhetorical structure of the tale the module is
processing.

– ReferringExpressionStory. This stage takes the decision of what must
be the reference for each concept that appears in the tale, avoiding lexical
redundancies and ambiguity.

– LexicalizationStory. This stage selects words from the vocabulary to de-
scribe the concepts involved in the current draft, using lexical tags for static
concepts, as characters and scenarios, and templates for actions and verbs,
providing structure to the sentences. Templates partly solve the need for
having an explicit grammar, but the knowledge base provides the required
information to solve issues like number and gender agreement.

– SurfaceRealizationStory. This stage is in charge of using the terms se-
lected in the previous stage to fill in the templates. Additionally, it carries
out a basic orthographic transformation of the resulting sentences. Templates
are converted into strings formatted in accordance to the orthographic rules
of English - sentence initial letters are capitalized, and a period is added at
the end.

3.3 Flow of control information

The generation module of ProtoPropp implements the flow of control information
among the modules as a simple pipeline, with all the modules in a sequence
in such a way that the output of each one is the input for the next. From

the plot plan generated by the CBR module, the text generator carries out
the mentioned tasks of Content Determination, Discourse Planning, Referring
Expression Generation, Lexicalisation and Surface Realization, each one of them
in an independent module.

4 Case Based Solutions for Lexicalisation

Lexicalisation based on templates is an acceptable method when operating in
restricted domains, but results can be poor if complex actions have to be ex-
pressed. Complex actions require the introduction of lexical chains that are em-
ployed exclusively for a specific verb in some tale. This introduces an unwanted
rigidity in the system, because it makes the task of extending the vocabulary an
arduous one. This solution also implies that the vocabulary holds no semantic
information about actors or objects involved in an action.

As an alternative, we have implemented a case-based lexicalisation module.
When human beings talk or write, they do not invent new words whenever
they need to express a specific idea that they have never before put into words.
Instead, they search for relations between the new idea to be expressed and
other ideas expressed previously, taking the same vocabulary and adapting it as
required. They reuse previous experience to solve a new case.

4.1 Representation of cases

The new module operates with the same vocabulary for domain concepts and
attributes as the original lexicalisation module. A lexical tag is assigned to each
one of them, made up of one or more words. The vocabulary for actions or
verbs becomes more complex: it is stored in the form of cases, where each case
stores not only the corresponding lexical tag but also additional information
concerning the type of case, the elements involved in the action, and the role
that those elements play in the action.

The domain of tales is restricted, and so is the type of actions that can appear
in them. The types of actions that appear in this module are:

– Move. Actions that result in a change of location, whether of a character
or an object.

– Atrans. Actions where there is a transfer of possession, whether of a char-
acter or an object.

– Fight. Actions involving physical confrontations between characters.
– Ingest. Actions where a character ingests something (either another char-

acter or an object).
– Propel. Actions where a physical force is applied to an object.
– State. Actions representing a change of state of a character or an object.
– Use. Actions where an element of the domain participates in the action.
– Feel. Actions that involve feelings, both positive or negative.
– Speak. Actions where a character or an object express an idea out loud.

Examples of cases for the different types of action are given below:

FIGHT:attack, ACTOR:witch, OBJECT:Hansel

FEEL:envy, ACTOR:stepsisters, OBJECT:Cinderella, FEELING:bad

STATE:marry, ACTOR1:knight, ACTOR2:princess, INI:single, FINAL:married

It is important to take into account that the structure of each one of these
types is not rigid. They will not always have the same elements, nor in the
same order. A clear example is provided by the verbs ‘leave’ and ‘go’, both of
type Move. The first one has an attribute From to indicate where the character
is coming from, whereas the second one has an attribute To that indicates his
destination.

Cases have been extracted from the formalised tales that were already avail-
able. A case is not an abstract instance of a verb or action, but rather a concrete
instance in which specific characters, places and objects appear. These elements
are stored in the module’s knowledge base. This allows the establishment of
relations between them when it comes to retrieving or reusing the cases.

4.2 The Case Base

Cases are stored in a Case Retrieval Net. This model is appropriate for the
problem under consideration, because on one hand our cases consist of attribute-
value pairs that are related with one another, and on the other hand the queries
posed to the module will not always be complete. When the system asks for
the appropriate lexical tag for a new action, the module looks for related verbs
based on their type and the class of elements that are involved in them.

The vocabulary of the module is built from the case base. For each attribute-
value pair in the cases an information entity is created. For each case, a node
is created which holds references to the information entities that make it up.
When introducing an IE, if that entity has already appeared in another case it
is not duplicated. Instead, another association is created between the new case
and the existing information entity.

As IEs are inserted to form the net, it is necessary to establish a measure of
similarity between them. This is done by reference to the module’s knowledge
base, in which the different concepts of the domain are organised into a taxon-
omy. The similarity between two entities is calculated by taking into account the
distance between them in the knowledge base and using Formula 1.

similarity(c1, c2) = 1 − (1 + distance(c1, c2))/10 (1)

The distance between two concepts is calculated by finding their first shared
ancestor, and adding up the distance between this ancestor and each of the
concepts. It can be seen as the number of nodes we have to pass when going
from one of the concepts to the other. It is also necessary to have a similarity
value for each entity with itself. This value is always 1, the maximum possible.

Each of the IEs is related to the cases to which it belongs with a certain value
of relevance. In the implemented module, the maximum relevance within a case

corresponds to the attribute Type with value 1, and the rest of the elements have
relevance 0.5. This is because when retrieving cases we are mainly interested in
the type of action that we are looking for, more than which elements are involved
in it. However, it can occur that the module retrieves a case of a different type,
if the similarity weights of the attributes of the case are high enough.

4.3 The CBR cycle

The module described in this paper executes each of the processes of the CBR
cycle in the following way.

Case Retrieval The retrieval task starts with a partial or complete problem
description, and ends when a matching previous case has been found. In our
module, the retrieval of cases is directly handled by the Case Retrieval Net and
its method of similarity propagation. Starting from a partial description of the
action we need to lexicalise, formed by the information available in the input plot
plan, the retrieval of the more similar cases is done by calculating an activation
value for each case in the case base. The ones with higher activation are the more
similar ones to the given query. This calculation is performed in three steps:

1. The IE nodes that correspond to the query are activated. If they are not
in the net because they did not belong to any case in the case base, the
correspondent nodes are inserted at the time of querying, calculating the
similarity and relevance weights using the knowledge base. The nodes corre-
sponding to the query are assigned an activation value of 1, and the rest a
value of 0.

2. The activation is propagated according to the similarity values of the arcs.
This is performed by looking over all the entity nodes of the net and by
calculating for each one its activation value using its own activation and its
similarity with the rest of IE nodes. This is achieved by using Formula 2
(where N is the total number of IE nodes).

activation(e) =

N∑

i=1

(sim(ei, e) ∗ activation(ei)) (2)

3. The achieved activations in the previous step are collected in the associated
case nodes, calculating the final activations of the cases also considering the
relevance weights of the arcs that connect the cases with their entities. This
final activation value of the cases is calculated with Formula 3.

activation(c) =

N∑

i=1

(rel(ei, c) ∗ activation(ei)) (3)

Once we have the final activation in the cases, the one with the higher value
is returned by the net. It would be possible to take not only the most similar
one, but a set with the most similar cases to the query.

Case Reuse Each retrieved case has an associated template from the vocab-
ulary for the verb or action it represents. In the process of reusing the case we
have obtained from the net, we have to substitute the attribute values of the
past case with the query values. Here we have tree different possibilities:

– If the attributes of the retrieved and the query cases are the same, the
values of the past case are simply changed for the values of the query one.
The template of the past case would be filled with the new values.

– If the attributes of the retrieved case are a subset of the query, then the
attributes of the past case are filled with the correspondent query values,
and the rest of the query attributes are ignored. The template of the past
case would be filled with the new values, although we may have lost some
important data of the query.

– If there are more attributes in the retrieved case than in the query, there are
spaces in the corresponding template that the system does not know how to
fill in. The easiest solution is to keep the values of the past case in the slots
for which the query does not specify any value.

At the end of the reuse process the query has an assigned template to pass
the message it is supposed to express into text.

Case Revision and Retainment When a case solution generated by the
reuse task is identified as correct or incorrect, an opportunity for learning from
success or failure arises. At the moment, this task is not implemented in our CBR
module. Due to the constraints associated with language use, the contribution of
an expert in the domain is required to revise the achieved results of the module,
retaining and refining them if possible.

5 Experiments and results

The method described here has been tested over a set of formalised fairy tales
that had been originally used as input data for ProtoPropp. They were con-
structed manually as simplified conceptual representations of existing renditions
of the corresponding texts. This involved removing those sentences of the original
tales with a meaning too complex to be expressed in terms of simple attribute-
value pairs, such as “The stepsisters envied Cinderella”. The current corpus
consists of five tales: the Lioness, Hansel & Gretel, Cinderella, the Merchant,
and the Dragon.

To test the validity of the approach, several experiments have been carried
out, using in each experiment part of the available material as case base and
the remainder as test case. In each experiment, the conceptual representation
of the test tale is used as input to the system, using the actions that appear in
the other four formalised tales as case base. The resulting lexicalisation is then
compared manually with the original lexicalisation available for the test tale.
Each lexical choice is evaluated according to the scale presented in Table 1.

Table 1. Evaluation scale

Score Observed lexicalisation Relative Meaning

4 Matches original tale
3 Equivalent to original no loss of meaning
2 Valid with slight loss of meaning
1 Acceptable with significant loss of meaning
0 Unaceptable radical departure from meaning

Some retrieval examples are shown in Table 2.
Results in the first example are acceptable. In the second one the meaning

of the retrieved cases does not match the meaning of the query. This is due to
the fact that the system stores no case for which the final state is ‘alive’, so it
returns cases of type State that are not related.

The experiments are repeated for all possible partitions of the available ma-
terial into pairs of test tale / sources for the necessary case base of actions. In
each one two different features are evaluated: the average score of the test tale
and the precision, that shows the relation between the number of retrieved cases
with 3 or 4 score values and the total number of retrieved cases. The results for
simple syntactic structures - presented in Table 3 - are positive, providing valid
and similar cases for the queries.

6 Conclusions and Future Work

Once again, the bottleneck for this type of system lies in the process of knowlege
acquisition. The use of the case-based reasoning paradigm for the task of lexi-
calisation is a good approximation whenever enough information is available in
the case base to express in an acceptable form any new request. With a larger
case base, the module would have more chances of finding a case that matches
the system’s need.

The main advantage of this method instead of other lexicalisation approaches
is that the system does not need an exhaustive lexicon, as CRNs work by approx-
imation and can retrieve similar cases for unknown queries due to the automatic
semantic relations attained in the net.

An important point to take into account in future work is the formalisa-
tion of actions appearing in the tales. In the implemented module, the actions
considered are quite simple, so they could be organised according to a simple
type system. Enriching the language the system can use would slowly lead to
the need for more complex actions that may be difficult to classify with simple
types. For this reason, we are considering the use of primitives to build complex
actions from simple ingredients. A possible starting point is Schank’s Concep-
tual Dependency theory [15]. This has already been used for story generation in
Tale-Spin [16]. Schank proposes an open set of primitives to express the meaning
of any sentence. These meanings are built up from primitive using a complex

Table 2. Examples

Query Cases retrieved Associated template Score

TYPE: MOVE,

ACTOR: princess,

FROM: castle

TYPE: MOVE,

left in a hurry 3
MOVE: leaveInHurry,

ACTOR: Cinderella,

FROM:palace

TYPE: MOVE,

came out of 3
MOVE: comeout,

ACTOR: Hansel,

FROM: house

TYPE:STATE,

ACTOR: knight,

OBJECT:princess,

FINAL:alive

TYPE: STATE,

released 1

STATE: release,

ACTOR: Gretel,

OBJECT: Hansel,

INI:jailed,

FINAL: free

TYPE: STATE,

found 0

STATE: find,

ACTOR: boatmen,

OBJECT: son,

INI:lost

FINAL:found

system for representing states and relationships. Some such mechanism would be
very useful when extending the system to deal with complex actions. A possible
solution is the use of not only attribute-value pairs, but also attribute-case pairs,
where the value for some attribute may be also a whole case.

Another improvement of the module’s operation would be to implement lazy

spreading activation [17] in the Case Retrieval Net. Instead of propagating ac-
tivation to all entity nodes, and then to all case nodes, propagation takes place
progressively from most similar nodes to not so similar nodes. Once enough case
nodes have been activated to reply to the query, propagation stops.

Table 3. Average Score for the Five Experiments

Tale Av.
Score

Sent. CB Size Precision

Lioness 2.60 10 76 0.60
Hansel & Gretel 2.55 11 57 0.55
Cinderella 2.91 11 65 0.73
Dragon 3.50 6 81 1.00
Merchant 2.80 5 81 0.60

References

1. Reiter, E., Dale, R.: Building Natural Language Generation Systems. Cambridge
University Press (2000)

2. Goldberg, E., Driedger, N., Kittredge, R.: Using natural-language processing to
produce weather forecasts. IEEE Expert: Intelligent Systems and Their Applica-
tions 9 (1994) 45–53

3. Callaway, C., Lester, J.: Narrative prose generation. In: Proceedings of the 17th
IJCAI, Seattle, WA (2001) 1241–1248

4. DeSmedt, K., Horacek, H., Zock, M.: Architectures for natural language genera-
tion: Problems and perspectives. In Ardoni, G., Zock, M., eds.: Trends in natural
language generation: an artificial intelligence perspective. LNAI 1036. Springer
Verlag (1995) 17–46

5. Cahill, L.: Lexicalisation in applied NLG systems. Technical Report ITRI-99-04
(1998)

6. Stede, M.: Lexical options in multilingual generation from a knowledge base. In
Adorni, G., Zock, M., eds.: Trends in natural language generation: an artificial
intelligence perspective. Number 1036. Springer-Verlag (1996) 222–237

7. Daelemans, W.: Introduction to the special issue on memory-based language pro-
cessing. J. Exp. Theor. Artif. Intell. 11 (1999) 287–296

8. Daelemans, W., Gillis, S., Durieux, G.: The acquisition of stress: a data-oriented
approach. Comput. Linguist. 20 (1994) 421–451

9. Ng, H.T., Lee, H.B.: Integrating multiple knowledge sources to disambiguate word
sense: an exemplar-based approach. In: Proceedings of the 34th annual meeting
on Association for Computational Linguistics, Morristown, NJ, USA, Association
for Computational Linguistics (1996) 40–47

10. Cardie, C.: A case-based approach to knowledge acquisition for domain-specific
sentence analysis. In: National Conference on Artificial Intelligence. (1993) 798–803

11. Aamodt, A., Plaza, E.: Case-based reasoning : Foundational issues, methodological
variations, and system approaches (1994)

12. Lenz, M., Burkhard, H.D.: Case retrieval nets: Basic ideas and extensions. In: KI
- Kunstliche Intelligenz. (1996) 227–239

13. Gervás, P., Dı́az-Agudo, B., Peinado, F., Hervás, R.: Story plot generation based on
CBR. In Macintosh, A., Ellis, R., Allen, T., eds.: 12th Conference on Applications
and Innovations in Intelligent Systems, Cambridge, UK, Springer, WICS series
(2004)

14. Garćıa, C., Hervás, R., Gervás, P.: Una arquitectura software para el desarrollo
de aplicaciones de generación de lenguaje natural. Procesamiento de Lenguaje
Natural 33 (2004) 111–118

15. Schank, R.: A Conceptual Dependency Representation for a Computer-Oriented
Semantics. PhD thesis, University of Texas, Austin (1969)

16. Meehan, J.: Tale-spin, an interactive program that writes stories. In: Proceedings
of the 5th International Joint Conference on Artificial Intelligence. (1977)

17. Lenz, M., Burkhard, H.: Case Retrieval Nets: Foundations, proper-
ties,implementation, and results. Technical report, Humboldt University, Berlin
(1996)

