
Case-Based Reasoning for Knowledge-Intensive

Template Selection During Text Generation

Raquel Hervás and Pablo Gervás

Departamento de Sistemas Informáticos y Programación
Universidad Complutense de Madrid, Spain
raquelhb@fdi.ucm.es,pgervas@sip.ucm.es

Abstract. The present paper describes a case-based reasoning solution
for solving the task of selecting adequate templates for realizing messages
describing actions in a given domain. This solution involves the construc-
tion of a case base from a corpus of example texts, using information from
WordNet to group related verbs together. A case retrieval net is used as
a memory model. A taxonomy of the concepts involved in the texts is
used to compute similarity between concepts. The set of data to be con-
verted into text acts as a query to the system. The process of solving a
given query may involve several retrieval processes - to obtain a set of
cases that together constitute a good solution for transcribing the data
in the query as text messages - and a process of knowledge-intensive
adaptation which resorts to a knowledge base to identify appropriate
substitutions and completions for the concepts that appear in the cases,
using the query as a source. We describe this case-based solution, and
we present examples of how it solves the task of selecting an appropriate
set of templates to render a given set of data as text.

1 Introduction

Template-based solutions for natural language generation rely on reusing frag-
ments of text extracted from typical texts in a given domain, having applied to
them a process which identifies the part of them which is common to all uses,
and leaving certain gaps to be filled with details corresponding to a new use.
For instance, when conveying the information that John moved to Atlanta, a
template such as moved to may be used, filling in the gap with appropriate
strings for John and Atlanta. Whereas more complex natural language gener-
ation systems based on the use of grammars can have rich stages devoted to
selecting fresh combinations of words to convey the same meaning, template-
based systems are faced with an additional difficulty. The fact that templates
are made up of words that are not accessible to the system makes the system
blind to their appropriateness as means of conveying a given idea for a spe-
cific set of arguments. Annotating the templates with tags that indicate the
circumstances under which it is appropriate to use the template would solve the
problem, but it eliminates some of the advantages of the template solution over
more knowledge-rich approaches.

Applying a case-based solution presents the advantage that the information
needed to solve the problem can be obtained from the original examples of
appropriate use that gave rise to the templates. By associating a case with
each template, with case attributes consisting of conceptual descriptions of the
arguments that were used for the template in the original instance, a case-based
reasoning solution can be employed to select the best template for realizing a
particular message. This approach has a certain psychological plausibility. People
do not always create new linguistic constructions each time they need to express
an idea not used before, but rather they appeal to their memory of expressions
they have used or heard in the past looking for the best way to express the
new idea. They remember other situations where they have expressed similar
ideas, and the phrasing they used in each situation. In this process they take
into account existing relations between the elements of the lexicon they already
know.

The present paper describes a case-based solution for the task of selecting
adequate templates for realizing messages describing actions in a given domain.
The goal is to achieve coverage of a broad range of messages by combining
instances of a restricted set of templates, providing automated means for dealing
with overlaps between the information conveyed by the templates found, and to
ensure coherent use of context information - in the shape of a knowledge base
for the domain accepted as input - whenever the resulting templates need to
mention information that was not explicit in the given query.

Section 2 presents a review of previous work in the relevant fields. Section
3 describes a case-based solution to template selection, outlining the inputs to
consider, the construction of the case base, and the main CBR processes involved.
Section 4 describes in detail an example of system operation, and section 5
presents conclusions and further work.

2 Lexicalisation and Knowledge Intensive CBR

The general process of text generation takes place in several stages, during which
the conceptual input is progressively refined by adding information that will
shape the final text [1]. During the initial stages the concepts and messages
that will appear in the final content are decided (content determination), these
messages are organised into a specific order and structure (discourse planning),
and particular ways of describing each concept where it appears in the discourse
plan are selected (referring expresion generation). This results in a version of
the discourse plan where the contents, the structure of the discourse, and the
level of detail of each concept are already fixed. The lexicalization stage that
follows decides which specific words and phrases should be chosen to express
the domain concepts and relations which appear in the messages. A final stage
of surface realization assembles all the relevant pieces into linguistically and
typographically correct text.

The most common model of lexicalisation is one where the lexicalisation mod-
ule converts an input built from domain concepts and relations organised as a

graph into an output built from words and syntactic relations also organised as a
graph. Cahill [2] differentiates between “lexicalization” and “lexical choice”. The
first term is taken to indicate a broader meaning of the conversion of something
to lexical items, while the second is used in a narrower sense to mean deciding
between lexical alternatives representing the same propositional content. Stede
[3] proposes a more flexible way of attaching lexical items to configurations of
concepts and roles, using a lexical option finder that determines the set of con-
tent words that cover pieces of the message to be expressed. These items may
vary in semantic specificity and in connotation, also including synonyms and
nearsynonyms. From this set, the subsequent steps of the generation process can
select the most preferred subset for expressing the message.

In template-based generation, the selection of templates is part lexicalization
and part surface realization, in the sense that it determines some of the words
that appear in the final text, but it also defines how they are put together into
a (hopefully) correct linguistic statement. For this reason, template selection
inherits a distinction equivalent to that pointed out by Cahill: one can talk about
rigid template assignment - where a given type of message is always realised by
the same template -, and template choice - where a given type of message can
be realised by several templates and mechanisms must be provided for deciding
when to use each possible template. A solution similar to that proposed by Stede
for pure lexicalization would be a good way of implementing template choice.

Case based approaches have been applied to natural language processing
(NLP) problems in the past. These natural language solutions process a text by
retrieving stored examples that describe how similar texts were handled in the
past. Examples of particular applications are stress acquisition [4], word sense
disambiguation [5] and concept extraction [6]. A good review of applications of
machine learning techniques in general to NLP tasks can be found in [7].

Knowledge Intensive Case-Based Reasoning (KI-CBR) relies on taxonomical
information about the concepts handled by a CBR system in order to improve
the results of the processes involved. This taxonomical information usually takes
the form of specific ontologies of domain information, sometimes coupled with
generic ontologies about CBR concepts [8]. A typical use involves resorting to
the taxonomy for computing similarity between cases.

When building knowledge resources for supporting this type of CBR, ac-
cepted practice recommends the reuse of previous existing ones. The WordNet
lexical database [9] has been widely used for knowledge-based systems, including
appplications to CBR in domains such as design support [10].

Case Retrieval Nets (CRNs) [11] are a memory model developed to improve
the efficiency of the retrieval tasks of the CBR cycle. They are based on the
idea that humans are able to solve problems without performing an intensive
search process, but they often start from the given description, consider the
neighbourhood, and extend the scope of considered objects if required.

The basic item in the context of the CRNs are so-called Information Entities
(IEs). These represent any basic knowledge item in the form of an attribute-
value pair. A case then consist of a set of such IEs, and the case base is a net

with nodes for the entities observed in the domain and additional nodes denoting
the particular cases. IE nodes may be connected by similarity arcs, and a case
node is reachable from its constituting IE nodes via relevance arcs. Different
degrees of similarity and relevance are expressed by varying arc weights. Given
this structure, case retrieval is carried out by activating the IEs given in the
query case, propagating this activation according to similarity through the net
of IE nodes, and collecting the achieved activation in the associated case nodes.

Case retrieval nets have been used for lexicalization before. Hervás and
Gervás [12] presented an application of a CRN to heuristic lexicalization in
the context of a NLG application. The case base employed was obtained from
the set of formalised documents used as input to the generator. The experimen-
tal results showed that the use of the case-based reasoning paradigm for the
task of lexicalisation is a good approximation whenever enough information is
available in the case base to express in an acceptable form any new request. If
queries beyond the scope of the input were tried, the system performed poorly.
It remained an open question whether the use of a larger case base with broader
coverage would improve results.

3 Case Based Solutions for Template Selection

Lexicalization based on templates selects words from the vocabulary to describe
the concepts involved in the current draft, using lexical tags for static concepts, as
characters and scenarios, and templates for actions and verbs, providing struc-
ture to the sentences. Templates partly solve the need for having an explicit
grammar, but the knowledge base provides the required information to solve
issues like number and gender agreement. This is an acceptable method when
operating in restricted domains, but results can be poor if complex actions have
to be expressed. Complex actions require the introduction of lexical chains that
are employed exclusively for a specific verb in some context. This introduces
an unwanted rigidity in the system, because it makes the task of extending the
vocabulary an arduous one. This solution also implies that the vocabulary holds
no semantic information about actors or objects involved in an action.

As an alternative, we have implemented a case-based lexicalisation module.
When human beings talk or write, they do not always invent entirely new sen-
tences whenever they need to express a specific idea that they have never before
put into words. Instead, sometimes they search for relations between the new
idea to be expressed and other ideas expressed previously, taking the same vo-
cabulary and adapting it as required. They reuse previous experience to solve a
new case.

This module relies on subsequent processing of its output by an accompany-
ing surface realization module. This module is in charge of putting together the
selected terms and templates. Additionally, it carries out a basic orthographic
transformation of the resulting sentences. Templates are converted into strings
formatted in accordance to the orthographic rules of English - sentence initial
letters are capitalized, and a period is added at the end.

The specific architecture of the NLG application that uses these modules
is implemented using cFROGS [13], a framework-like library of architectural
classes intended to facilitate the development of NLG applications. It is designed
to provide the necessary infrastructure for developing NLG applications, mini-
mizing the implementation effort by means of schemas and generic architectural
structures commonly used in these systems.

3.1 Inputs to the NLG module

Three particular inputs to the NLG module are relevant to the work described
here: the knowledge base, the vocabulary and the discourse plan.

The knowledge base The knowledge base contains the relevant conceptual
information about the domain, in such a way that the generator can consult
it and use it. It is organized as a tree, including individuals, locations, objects,
relations between them and their attributes. The facts in the knowledge base are
domain concepts that are used to instantiate the templates when representing
cases. The concepts appearing in the cases are organized as a taxonomy needed to
compute their similarities. Each type of concept is divided into several subtypes.

The vocabulary The vocabulary contains all the lexical information essential
to write the final text. It is structured as a tree as well, very similar to the
knowledge base one, with the difference that each fact or relation has a lexical
tag associated to its eventual realization in the final text.

In the vocabulary that the system uses, a lexical tag made up of one or more
words is assigned to each concept in the domain. This is used for lexicalising
individual concepts, with little choice given. The vocabulary for actions or verbs
becomes more complex: it is stored in the form of cases, where each case stores
not only the corresponding template but also additional information concerning
the type of case, the elements involved in the action, and the role that those
elements play in the action. The types of actions that appear in this module are
shown in Table 1.

It is important to take into account that the structure of each one of these
types is not rigid. They will not always have the same elements, nor in the
same order. A clear example is provided by the verbs ‘leave’ and ‘go’, both of
type Move. The first one has an attribute From to indicate where the character
is coming from, whereas the second one has an attribute To that indicates his
destination.

Verbs are particularly important in the present context because we are con-
sidering narrative tales which have little descriptive depth. This implies that
verbs carry a significant part of the communication effort.

A case is not an abstract instance of a verb or action, but rather a concrete
instance in which specific characters, places and objects appear. These elements
are stored in the module’s knowledge base. This allows the establishment of
relations between them when it comes to retrieving or reusing the cases.

Table 1. Types of actions

Type Characteristics of action

Move a character or an object changes of location
Atrans possession of a character or an object is transferred
Fight physical confrontations between characters
Ingest a character ingests something (either another character or an object)
Propel a physical force is applied to an object
State change of state of a character or an object
Use an element of the domain participates in the action
Feel involve feelings, both positive or negative
Speak a character or an object express an idea out loud

Not all the attributes in a case act later as slot-fillers in the corresponding
template. Some attributes - like the specification of initial and final states in a
state change - are not explicitly mentioned in a template. For example, the case
for kill indicates an initial state alive and a final state dead, but these are not
mentioned in the surface form of the template. Such attributes appear enclosed
in culry brackets in the representation of the case.

Examples of cases for the different types of action are given below. The as-
sociated templates are shown below for each case:

TYPE: LEX: ACTOR: OBJECT:

FIGHT attack witch Hansel

attacked

TYPE: LEX: ACTOR: OBJECT: {FEELING:}
FEEL envy stepsisters Cinderella bad

envied

TYPE: LEX: ACTOR1: ACTOR2: {INI:} {FINAL:}
STATE marry knight princess single married

married

The discourse plan The discourse plan is the structure of the information that
is to be rendered as text. Each line of this input corresponds to a paragraph sized
portion of the text, containing information about a sequence of actions, the place
where they take place, the characters involved, and the objects used in them.
The solution presented here involves only a particular line of the discourse plan.
The rest of the discourse plan would have to be treated in the same way one line
at a time. For some complex decisions involved in case adaptation - discussed
in section 3.5 - the context as featured in the discourse plan may need to be
consulted.

3.2 Building The Case Base

To ensure a broad coverage of possible inputs, the case base has been built
by combining two sources: WordNet and a corpus of texts selected as typical
examples of the type of text desired as output. In order to provide a broad
enough choice of templates - in the sense described above - a set of possible
templates must be assigned to each type of action. WordNet is used as a basic
source to obtain a set of possible verbs for conveying a given type of action. This
set of verbs must be filtered to ensure that the final selection of verbs conforms
with typical usage in the desired genre. A corpus of texts is used to filter out
the WordNet senses that are inappropriate for the genre of the desired outputs.
For the selected senses, the corpus provides examples of use, which are used to
generate the cases.

The corpus employed consists of 109 classic fairy tales, which included a total
of 9852 sentences. These have been obtained from Internet web sites presenting
collections of fairy tales in English, and they include a collection of Aesop’s
fables, a selection of Afanasiev’s collection of Russian fairy tales, and tales from
the selections by Andersen, the Grim brothers, and Perrault.

For each case, the concepts appearing in the example found in the corpus
- which become information entities in the case retrieval net used to store the
cases - must also be inserted into the knowledge base. To ensure appropriate
performance, they must be inserted at the correct place in the taxonomy that
organises the knowledge base. This is important because the system uses the
relative positions in this taxonomy to calculate similarity between the query
and the cases during retrieval.

The general process of constructing a particular case is better illustrated by
means of an example.

The MOVE type of action is associated with the concept ‘move’ found in
WordNet. Sixteen senses are provided for it. Of those, the first three are relevant
in this situation: sense 1 (travel, go, move, locomote), sense 2 (move, displace)
and sense 3 (move so as to change position, perform a nontranslational motion).
For each one a number of possible words for that sense are listed (132 for sense
1, 90 for sense 2 and 99 for sense 3). These must be filtered with respect to the
corpus. For instance, 51 of the possible words for sense 1 do not appear at all in
the corpus.

One of the possible words suggested by WordNet as a sense of ‘move’ is:

travel -- (undergo transportation as in a vehicle; "We travelled
North on Rte. 508")

The corpus provides the following examples of use of that word:

One day the king went travelling to distant lands
Then we [Simbad (and the merchants)] traveled many days across high
mountains until we came to the sea, where we set sail.

These examples give rise to the corresponding cases:

TYPE: LEX: ACTOR: TO:

MOVE travel-to king distant-lands

TYPE: LEX: ACTOR: ACROSS:

MOVE travel-across Simbad mountains

The nature of the documents used to build the corpus - children’s fairy tales
- presents the advantage that the range of concepts involved, both in terms of
verbs and nouns, is limited.This results in a certain degree of lexical redundancy
which simplifies the knowledge acquisition process. This process is carried out
semi-automatically. A dependency analysis is carried out for the sentences in the
corpus using Minipar [14]. Verbs and the nouns that depend on them are identi-
fied. For each verb, and action must be built and a template must be generated. A
type is assigned to each action. This type constitutes a strong restriction during
retrieval, so it should be used with caution. As discusses in section 4, maximal
flexibility in the use of the system is obtained by ommiting this attribute during
retrieval. The concepts corresponding to the nouns identified in the corpus must
be inserted into the knowledge base. Both action construction and noun concept
insertion require human supervision., However, the fact that nouns and verbs
are treated asymetrically reduces the actual effort involved in processing a large
corpus: no composite structure is built for representing nouns, and the insertion
of verbs into the knowledge base is not subject to positional restrictions.

3.3 The Case Base

Cases are stored in a Case Retrieval Net. This model is appropriate for the
problem under consideration, because on one hand our cases consist of attribute-
value pairs that are related with one another, and on the other hand the queries
posed to the module will not always be complete. To find a lexical tag for a given
action, the CRN is queried with the class of elements involved in the action.

The vocabulary of the module is built from the case base. For each attribute-
value pair in the cases an information entity is created. For each case, a node
is created which holds references to the information entities that are contained.
When introducing an IE, if that entity has already appeared in another case it
is not duplicated. Instead, another association is created between the new case
and the existing information entity.

As IEs are inserted to form the net, it is necessary to establish a measure of
similarity between them. This is done by reference to the module’s knowledge
base, in which the different concepts of the domain are organised into a taxon-
omy. The similarity between two entities is calculated by taking into account
the distance between them in the knowledge base and using Formula 1. H is the
maximum height in the knowledge base.

sim(c1, c2) = 1 − (1 + distance(c1, c2))/(H ∗ 2) (1)

The distance between two concepts is calculated by finding their first shared
ancestor, and adding up the distance between this ancestor and each of the
concepts. It can be seen as the number of nodes we have to pass when going
from one of the concepts to the other. It is also necessary to have a similarity
value for each entity with itself. This value is always 1, the maximum possible.

Each of the IEs is related to the cases to which it belongs with a certain value
of relevance. In the implemented module, the maximum relevance within a case
corresponds to the attribute Type with value 1, and the rest of the elements have
relevance 0.5. This is because when retrieving cases we are mainly interested
in the type of action that we are looking for, rather than which elements are
involved in it. However, it can occur that the module retrieves a case of a different
type, if the similarity weights of the attributes of the case are high enough.

3.4 Case Retrieval

The retrieval task starts with a partial or complete problem description, and
ends when a matching previous case has been found. In our module, the re-
trieval of cases is directly handled by the Case Retrieval Net and its method of
similarity propagation. Starting from a partial description of the action we need
to lexicalise, the retrieval of the more similar cases is done by calculating an
activation value for each case in the case base. The ones with higher activation
are the more similar ones to the given query. This calculation is performed in
three steps:

1. The IE nodes that correspond to the query are activated. If they are not
in the net because they did not belong to any case in the case base, the
corresponding nodes are inserted at the time of querying, calculating the
similarity and relevance weights using the knowledge base. The nodes corre-
sponding to the query are assigned an activation value of 1, and the rest a
value of 0.

2. The activation is propagated according to the similarity values of the arcs.
This is performed by looking over all the entity nodes of the net and by
calculating for each one its activation value using its own activation and its
similarity with the rest of IE nodes. This is achieved by using Formula 2
(where N is the total number of IE nodes).

activation(e) =
N∑

i=1

(sim(ei, e) ∗ activation(ei)) (2)

3. The achieved activations in the previous step are collected in the associated
case nodes, calculating the final activations of the cases also considering the
relevance weights of the arcs that connect the cases with their entities. This
final activation value of the cases is calculated with Formula 3.

activation(c) =
N∑

i=1

(rel(ei, c) ∗ activation(ei)) (3)

Once we have the final activation in the cases, the one with the higher value
is returned by the net. It would be possible to take not only the most similar
one, but a set with the most similar cases to the query.

3.5 Case Reuse

Each retrieved case has an associated template from the vocabulary for the verb
or action it represents. In the process of reusing the case we have obtained from
the net, we have to substitute the attribute values of the past case with the
query values. Here we have three different possibilities:

1. The retrieved case and the query have the same set of attributes.
2. The query has more attributes than the retrieved case.
3. There are more attributes in the retrieved case than in the query.

For situation 1, the values of the retrieved case are simply replaced with the
values in the query. The template corresponding to the retrieved case is filled
with the new values. At the end of the reuse process the query has been assigned
a correct template to realize as text the message it conveys.

For situation 2, the attributes of the retrieved case are filled with the cor-
responding query values. The resulting adaptation is a partial solution to the
problem posed by the query. A secondary retrieval process is set in motion, using
as a query simply the set of attributes in the query that could not be accommo-
dated in the partial solution provided by the first case retrieved by the system.
This query includes no specific type of action, and it relies on the ability of the
case retrieval net for case completion to provide a case with a type of action that
matches the given arguments.

For situation 3, there will be vacant attributes in the corresponding solution.
The easiest solution is to keep the values of the past case in the slots for which the
query does not specify any value. Better results can be obtained by consulting the
system knowledge base for concepts that the knowledge base shows as related to
those appearing in the query. In order to be appropriate as fillers for the vacant
slots, these concepts must be within a given threshold of similarity - in terms of
relative distance within the taxonomy - with respect to the original values given
in the retrieved case for those attributes. In situations where lexicalization of a
particular message forms part of a larger context - such as a larger text - better
results are obtained by searching the neighbouring messages in the discourse.

3.6 Case Revision and Retainment

A very complex set of linguistic, cognitive and pragmatic constraints must be
taken into account when validating any natural language solutions generated in
this manner. The contribution of an expert in the domain is required to revise
the results achieved by the module, and no automated solution to this stage of
the CBR cycle is contemplated so far.

4 An Example of System Operation

To show how the system operates, an example is presented. Suppose the system
is presented with a query such as:

ACTOR: prince, OBJECT: dragon, WITH: sword, INI: alive, FINAL: dead

The text that would correspond to this query would presumably be “The
prince killed the dragon with a sword”.

The retrieval process results in the following case:

TYPE: LEX: ACTOR: OBJECT: WHERE: {INI:} {FINAL:}
STATE kill peasant snake forest {alive} {dead}

This case is chosen because the values for the attributes INI and FINAL
are equal, and the similarities between the other concepts, computed using the
taxonomy, is high (‘prince’ and ‘peasant’ are immediate siblings in the taxonomy
- descendants of ‘person’ - and ‘dragon’ and ‘snake’ are descendants of nodes
that are immediate siblings - ‘flying-creature’ and ‘non-flying-creature’).

The case obtained during the retrieval process contains attributes (TYPE and
WHERE) for which no values are given in the query. The TYPE attribute is special
and it will be simply inherited by the contribution obtained from this case for the
final solution. The absence of TYPE in the query is intentional. The final result
provided by the system may have to be built up from several cases of different
types in order to account for all the attributes given explicitly in the query. To
include an explicit type in the query would restrict the set of possible actions
that can be included in the final result to those matching the explicit type.
This would defeat the purpose of the technology we are using. The presence of
unfulfilled attributes of other kinds - such as the WHERE attribute in this example
- triggers a secondary process of searching the knowledge base for possible values
for those attributes. Elements in the knowledge base related with those elements
appearing in the query are considered as possible candidates to fill the additional
attribute slots in the second retrieved case. The most similar ones - according
to relative proximity within the taxonomy - are considered. In this instance,
the knowledge base is queried for elements related to prince, dragon or sword
which are similar to forest. The relations for these three concepts are shown in
the paraphrase of the knowledge base1 given in Table 2.

The system returns cave because the knowledge base contains information
about the dragon living in a cave, and cave is similar to forest in the taxonomy.
Other choices would have been palace or princess, related in the knowledge
base to the prince, but their calculated similarities to forest are lower.

Since there are attributes present in the query for which no slot is available
in the retrieved case (WITH), a second retrieval process is triggered with the fol-
lowing query, resulting from a selective restriction of the original query to those
1 Relations in the actual knowledge base are represented in terms of instance identi-

fiers, which would be meaningless for readers in this context.

Table 2. Relations in the knowledge base

relations:

relation(prince,palace,live)

relation(prince,sword,have)

relation(prince,princess,love)

[...]

relation(dragon,cave,live)

[...]

attributes not provided in the case retrieved in the first instance (the subject
and object of the action are retained, to ensure soundness of the result):

ACTOR: prince, OBJECT: dragon, WITH: sword

This second retrieval process returns the following case:

TYPE: LEX: ACTOR: OBJECT: WITH:

FIGHT attack hunter lion spear

The final result of the complete process is an adaptation of the set of retrieved
cases in all the required retrieval process, together with an assignment of values to
their attributes, either from the original attributes in the query or from values related
to them obtained from the knowledge base. The fact that the query had no explicit
TYPE attribute has permitted that the solution be composed of several instances with
different types.

The associated templates are shown below for each case.

TYPE: LEX: ACTOR: OBJECT: WHERE: {INI:} {FINAL:}
STATE kill prince dragon cave {alive} {dead}

killed in

TYPE: LEX: ACTOR: OBJECT: WITH:

FIGHT attack prince dragon sword

attacked with

To improve readability, any attribute slots whose values have already been
mentioned in preceding cases within the same response are marked, to indicate
that subsequent stages of the generation process should render them as pronouns.

After surface realization, the result provided by the system for the original
query would be:

The prince killed the dragon in the cave. He attacked it with a sword.

This result is not exactly what we were looking for, but it conveys all the
desired information. The vocabulary does not have the exact template needed in
this case, but the system combines the templates and knowledge base resources
it possesses to compose an alternative phrasing for the requested message.

5 Conclusions and Future Work

The case-based solution described in this paper presents the advantage of achiev-
ing coverage of a broad range of messages by combining instances of a restricted
set of templates, providing automated means for dealing with overlaps between
the information conveyed by the templates found, and ensuring coherent use of
context information - in the shape of a knowledge base for the domain accepted
as input - whenever the resulting templates need to mention information that
was not explicit in the given query. By resorting recursively to processes of case
retrieval with progressively reduced versions of the query till all the data in the
query have been covered by at least one case, the system automatically obtains
the best set of cases that cover the data with minimal overlap. Whenever the
selected cases involve information that was not explicitly available in the query,
the use of the input knowledge base guarantees that any additional information
drafted into the final result is coherent with the particular set of data under
consideration.

The main advantage of this method with respect to other template selection
approaches is that the system does not need an exhaustive set of templates,
as CRNs work by approximation and can retrieve similar cases for unknown
queries due to the automatic semantic relations attained in the net. A classic
problem in natural language generation is the “generation gap” described by
Meteer [15], a discrepancy between what can be expressed in the text plan and
what the particular realization solution can actually convert into text. In terms
of templates, the “generation gap” occurs when the input calls for messages not
explicitly contemplated in the set of templates in use. The present system ensures
that such messages can be conveyed by a combination of simpler templates,
adequately linked together by occurrences of coreferring elements. CRNs can
handle partially specified queries without loss of efficiency, in contrast to most
case retrieval techniques that have problems with partial descriptions. Given only
a part of a case, the net can complete the rest of its content. This behaviour is
similar to that suggested by Stede [3] for the lexicalization task.

Cases need not be described by attribute vectors. There are features that
would be relevant for some cases but not for the others. This allows for cases
associated to different templates of the same type to have different number
of attributes, which ensures easy treatment of sentences with a wide choice of
complements - for instance “I have lunch”, “I have lunch in the office”, “I have
lunch at my desk”, “I have lunch at midday”.

Insertion of new cases (even with new attributes) can be performed incre-
mentally by injecting new nodes and arcs. This is a particular advantage since
any extension of the corpus may lead to the addition of new cases.

The difficulties presented by the knowledge acquisition have been partially
addressed by the semi-automatization of the analysis of the corpus. We are cur-
rently working on improving this aspect of the system. Although it will probably
be impossible to fully automate the process of acquisition, the method presented
here represents a significant improvement on manual approaches to the develop-
ment of template-based generators. Both approaches require the construction of
the templates and the representation of the concepts. However, whereas an alto-
gether manual approaches requires the additional elaboration of explicit criteria
to guide the correct use of templates, the approach presented here provides an
automatic case-based decision process for template selection.

The approach employed in this paper for actions may be extended to other
elements in a story, such as characters, objects, locations,... This would re-
quire a specific notation in which these elements are described as a collection of
attribute-value pairs. We have chosen to focus on actions until we have explored
the potential of the technique. The exploration of such extensions to other ele-
ments will be contemplated as further work. However, the possible effect upon
the complexity of knowledge acquisition must be considered.

The representation of actions in the current version of the system is very
simple. The resulting texts would improve significantly if a more complex set
of actions where considered. Template-based generators have obtained results
comparable to more elaborate solutions by resorting to recursive use of templates
[16]. In our approach, this would correspond to allowing actions to be represented
as nested cases, where a case would be constructed not only of attribute-value
pairs, but also attribute-case pairs, where the value for some attribute may itself
be a complete case - with an associated template. Recursive nesting of cases
would allow recursive use of templates. The retrieval and adaptation stages would
have to be adapted to deal with this recursive nature.

In order to tackle the complexity arising from this enhancement, we contem-
plate two possible sources of inspiration. One is to consider the use of primitives
to build complex actions from simple ingredients, along the lines of Schank’s
Conceptual Dependency theory [17]. Schank proposed an open set of primitives
to express the meaning of any sentence in terms of primitives, using a complex
system for representing states and relationships. Another is to define a com-
plex conceptual taxonomy of actions, relying for their manipulation on the same
techniques employed for handling individual concepts in the current system.
This would allow a homogeneous treatment of knowledge through the system,
and may lead to easier interactions between the different types of knowledge. To
organise such a taxonomy of actions, WordNet would be a valuable source.

Efficiency issues have not been contemplated so far, but as the size of the
case base rises, they are becoming relevant. A possible way of reducing this
risk would be to implement lazy spreading activation [18] in the Case Retrieval
Net. Instead of propagating activation to all entity nodes, and then to all case
nodes, propagation takes place progressively from most similar nodes to not so
similar nodes. Once enough case nodes have been activated to reply to the query,
propagation stops.

References

1. Reiter, E., Dale, R.: Building Natural Language Generation Systems. Cambridge
University Press (2000)

2. Cahill, L.: Lexicalisation in applied NLG systems. Technical Report ITRI-99-04
(1998)

3. Stede, M.: Lexical options in multilingual generation from a knowledge base. In
Adorni, G., Zock, M., eds.: Trends in natural language generation: an artificial
intelligence perspective. Number 1036. Springer-Verlag (1996) 222–237

4. Daelemans, W., Gillis, S., Durieux, G.: The acquisition of stress: a data-oriented
approach. Comput. Linguist. 20 (1994) 421–451

5. Ng, H.T., Lee, H.B.: Integrating multiple knowledge sources to disambiguate word
sense: an exemplar-based approach. In: Proceedings of ACL 1996, NJ, USA, ACL
(1996) 40–47

6. Cardie, C.: Integrating Case-Based Learning and Cognitive Biases for Machine
Learning of Natural Language. Journal of Experimental and Theoretical Artificial
Intelligence 11 (1999) 297–337

7. Daelemans, W.: Introduction to the special issue on memory-based language pro-
cessing. J. Exp. Theor. Artif. Intell. 11 (1999) 287–296

8. Gervás, P., Dı́az-Agudo, B., Peinado, F., Hervás, R.: Story Plot Generation based
on CBR. Journal of Knowledge-Based Systems 18 (2005) 235–242

9. Miller, G.A.: Wordnet: a lexical database for English. Commun. ACM 38 (1995)
39–41

10. Gomes, P., Pereira, F.C., Paiva, P., Seco, N., Carreiro, P., Ferreira, J., Bento, C.:
Selection and Reuse of Software Design Patterns Using CBR and WordNet. In:
Proc. of the 15th International Conference on Software Engineering and Knowledge
Engineering (SEKE’03). (2003)

11. Lenz, M., Burkhard, H.D.: Case Retrieval Nets: Basic Ideas and Extensions. In:
KI - Kunstliche Intelligenz. (1996) 227–239

12. Hervás, R., Gervás, P.: Case Retrieval Nets for Heuristic Lexicalization in Natu-
ral Language Generation. In Cardoso, A., Bento, C., Dias, G., eds.: Progress in
Artificial Intelligence (EPIA 05). Number LNAI 1036, (Springer-Verlag)

13. Garćıa, C., Hervás, R., Gervás, P.: Una Arquitectura Software para el Desarrollo
de Aplicaciones de Generación de Lenguaje Natural. Procesamiento de Lenguaje
Natural 33 (2004) 111–118

14. Lin, D.: Dependency-based evaluation of MINIPAR. In: Proc. of Workshop on the
Evaluation of Parsing Systems, Granada, Spain (May 1998)

15. Meteer, M.W.: The generation gap: the problem of expressibility in text planning.
PhD thesis, Amherst, MA, USA (1990)

16. McRoy, S., Channarukul, S., Ali, S.: A Natural Language Generation Component
for Dialog Systems. In Cox, M., ed.: Working Notes of the AAAI Workshop on
Mixed-Initiative Intelligence (AAAI99). (1999)

17. Schank, R.: Conceptual Information Processing. Elsevier Science Inc., New York,
NY, USA (1975)

18. Lenz, M., Burkhard, H.: Case Retrieval Nets: Foundations, proper-
ties,implementation, and results. Technical report, Humboldt University, Berlin
(1996)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /KOR <FEFFace0d488c9c8c7580020d504b9acd504b808c2a40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e0020c7740020c124c815c7440020c801c6a9d558b824ba740020ae00af340020d3ecd5680020ae30b2a5c7440020c0acc6a9d574c57c0020d569b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee575284e8e9ad88d2891cf76845370524d6253537030028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f0030028fd94e9b8bbe7f6e89816c425d4c51655b574f533002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c9069752865bc9ad854c18cea76845370524d521753703002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f300290194e9b8a2d5b9a89816c425d4c51655b57578b3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

