
Agent-based Solutions for Natural Language

Generation Tasks

Raquel Hervás and Pablo Gervás

Departamento de Sistemas Informáticos y Programación
Universidad Complutense de Madrid, Spain
raquelhb@fdi.ucm.es,pgervas@sip.ucm.es

Abstract. When building natural language generation applications it is
desireable to have the possibility of assembling modules that use differ-
ent techniques for each one of the specific generation tasks. This paper
presents an agent-based module for referring expression generation and
aggregation, implemented within the framework of a generic architecture
for implementing multi-agent systems: Open Agent Architecture.

1 Introduction

Natural language generation (NLG) is subdivided into several specific subtasks
[1], and each one of them operates at a different level of linguistic representation
- discourse, semantics, lexicon, syntax... Natural language generation can be
applied to domains where the communication goals and the characteristics of the
texts to be generated can be very different, from the transcription into natural
language of numerical contents [2] to the generation of literary texts [3].

Each type of NLG application may need a different way of organising the
system into modules [4]. Even given a specific organization (or architecture) of
the system, different types of applications may require different solutions for
each of the specific tasks involved in the generation process. In this context, a
Multi-Agent System (MAS) implementation [5] may be highly benefitial. Each
agent may be assigned a specific task to solve, and agents may negotiate between
to reach a final solution, with no need to define an explicit architecture beyond
the society of agents. Defining the architecture of the system would be limited
to establishing the communication interfaces between the agents.

To put this idea to the test, two subtasks of the process of automatic gen-
eration of language texts have been selected: referring expresion generation and
aggregation.

2 Referring Expression Generation and Aggregation

The appropriate use of referring expresions to compete with human-generated
texts involves a certain difficulty. Simple algorithms to decide when to use a
pronoun or a full noun produce very poor results. According to Reiter and Dale



[6], a referring expresion must communicate enough information to identify uni-
vocally the intendent referent within the context of the current discourse, but
always avoiding unnecessary or redundant modifiers. Reiter and Dale propose
an algorithm for generating noun phrases to identify objects in the sphere of
attention of the reader. Kibble and Power [7] propose a system for planning
coherent texts and choosing the referring expresions. They claim that textual
and syntactic planning mut be partially directed by the goal of maintaining
referential continuity, increasing the opportunities for the unambiguous use of
pronouns. Palomar et al. [8] also present an algorithm to identify noun phrases
which are intended referents for personal, demostrative and reflexive pronouns
or which have been ommitted in Spanish texts. They define a list of restrictions
and preferences for the different types of pronominal expresions and they stress
the importance of each type of knowledge - lexical, morphological, syntactic, and
statistical - in the resolutoin fo anaphoric references.

Aggregation is the task of deciding how to compact the representation of
the information in a given text. However, there is no accepted definition in the
literature of what it is [9]. This task operates at several different linguistic lev-
els, but in this paper we are only considering its application to concepts and
their attributes. For instance, the system must decide whether to generate “The
princess is blonde. She sleeps.” or to generate “The blonde princess sleeps.”. One
should take care not to produce texts with too many adjectives when the infor-
mation to be processed is dense in terms of attributes, as in “The pretty blonde
princess lived in a strong fancy castle with her stern rich parents.” Aggregation
is generally desireable, but a balance must be found between conciseness and an
acceptable style.

3 Open Agent Architecture

The Open Agent Architecture (OAA) [10] is a framework for developing multi-
agent systems intended to enable more flexible interactions among a dynamic
community of heterogeneous software agents. The operation of the architecture
is based on the idea of delegation: agents do not hard-code their interactions
(method calls or messages) in a way that fixed how and whom they will inter-
act with, instead the interactions between OAA agents are expressed in terms
of needs delegated to a Facilitator agent. This Facilitator agent coordinates the
agent community so that it can achieve its task. It does this by providing services
such as parallelism, failure handling, and conflict detection, which relieves each
client agent from having to worry about these issues itself. OAA’s Distributed
Agents are simply programs - or wrappers around programs - that share sev-
eral common functionalities, and which are possibly distributed across various
machines.

In OAA, control of how interaction and communication occurs among agents
arises from cooperation between 4 distinct knowledge sources:

– the requester which specifies a goal to the Facilitator,



– providers who know what services they can provide and register their capa-
bilities with the Facilitator,

– the Facilitator which receives requests from requesters, maintains a list of
available provider agents, and has a set of general strategies for meeting
goals, and

– meta-agents that contain domain- or goal-specific knowledge and strategies
which are used as an aid by the Facilitator.

These knowledge sourcers interact in the following way to make cooperation
possible among a set of OAA agents. The Facilitator matches a request to an
agent or agents providing that service, delegates the task to them, coordinates
their efforts, and delivers the results to the requester. This manner of cooperation
among agents is suitable both for straightforward and compound, multi-step
tasks. In addition to delegation, OAA also provides the ability to make direct
calls to a specific agent, and to broadcast requests.

The OAA’s Interagent Communication Language (ICL) is the interface and
communication language shared by all agents, no matter what machine they
are running on or what computer language they are programmed in. The ICL
has been designed as an extension of the Prolog programming language, to take
advantage of unification and other features of Prolog. A number of key decla-
rations and other program elements are specified using ICL expressions. These
include declarations of capabilities, events (communications between agents), re-
quests for services, responses to requests, trigger specifications, and shared data
elements.

4 Multiagent Module for Referring Expression

Generation and Aggregation

The work presented here is a multi-agent module for the tasks of Referring
Expression Generation and Aggregation, implemented within the OAA archi-
tecture. Each agent is responsible for a specific subtask, and the conjunction of
all the subtasks gives rise to a full implementation of the required tasks. This
module differs from a blackboard architecture in the ability to negotiate that
OAA agents have. When an agent requests an action from the rest of the sys-
tem, the system may gather the solutions offered by different agents and use the
one that best fits its purpose, or a combination of various solutions. The agents
in OAA negotiate between them, rather than simply sharing data.

The multiagent system is made up of five specific agents and one auxiliary
agent, coordinated by the Facilitator provided by the OAA architecture. A brief
description of these agents and their functionality follows:

– FileAgent. Auxiliary agent capable of reading and writing text files.
– ReferringAgent. Main agent for the the two tasks addressed by the mod-

ule. It deals with interpreting the input data and ensuring they are available
for the rest of the agents.



– PronounAgent. Agent in charge of deciding if the reference to a given
concept is made using its full name or only a pronoun.

– KnowledgeAgent. Agent that enriches some of the concepts with the at-
tributes associated to them in the knowledge base.

– AggregateAgent. Agent that aggregates some of the descriptions of con-
cepts in the text - in term of attributes - with the occurrences of the concepts
in the text.

– DisaggregateAgent. Agent that performs the opposite task: it separates
a description of a concept in terms of its attributes from a given occurrence
of the concept in the text.

4.1 Data Representation

The notation described here corresponds to the internal representation within the
multiagent system. Messages to be communicated in the final text are organised
into paragraphs, and they are represented in the ICL language of the OAA
architecture.

Characters, locations, and attributes are represented as simple facts that
contain an identifier - which distinguishes each character or location from the
others - and its name.

character(ch26,princess)

location(l14,castle)

attribute(ch26,blonde)

The identifier occurring in attribute facts corresponds to the identifier of the
concept that has that attribute, and the name corresponds to the attribute itself.

The current prototype operates over simple linguistic constructions: the de-
scription of a concept using an attribute or the relation between two concepts.

[character(ch26,princess),

isa(),

attribute(ch26,pretty)]

[character(ch26,princess),

relation(ch26,l14,live),

location(l14,castle)]

Pronominal references are indicated by adding a ‘pron’ element to the corre-
sponding fact, as in

character(ch26,princess,pron)

Finally, concepts may be accompanied by attributes that will precede the
name of the concept, as in “the pretty blonde princess”. This list of attributes
is added to the corresponding concept.

character(ch26,princess,

[attribute(ch26,pretty),

attribute(ch26,blonde)])



4.2 Specific Funcionality of the Agents

Each one of the agents that make up the module is responsible for a very specific
task. Thanks to the flexibility of multi-agent systems, not all agents will be
required every time to act on a text draft. Each agent carries out different
modifications over the text draft, and only some of them may be desireable
at a given stage.

ReferringAgent The ReferringAgent interprets the input data obtained from
a file and makes them available for the rest of the agents to work on them. It
sends a request to the agent system for reading from a text file the input to the
referring expresion generation module. The agent reads this string, transforms
it into the internal representation of the agent system, and makes it public to
the rest of the agents by specifying to the Facilitator that it has those data and
that any other agent may read them or modify them. Another task available
from this agent is that of saving the processed information to file. An example
of input text is:

[character(ch26,princess);relation(ch26,l14,live);location(l14,castle)]
[character(ch26,princess);isa();attribute(ch26,pretty)]

For this text, the following facts are generated as messages:

message(0,0,[character(ch26,princess),

relation(ch26,l14,live),

location(l14,castle)])

message(0,1,[character(ch26,princess),

isa(),

attribute(ch26,pretty)])

Messages are numbered indicating to which paragraph they belong, and their
position with respect to other messages within that paragraph. The rest of the
agents will eliminate or add messages, and it is necessary to retain the order
between them for the generated text to keep the desired structure.

PronounAgent The Pronoun Agent decides whether the reference to a given
concept is carried out using its full name, for instance “the princess”, or the
corresponding pronoun, in this case, “she”. The algorithm employed by the agent
is based on two ideas. When writing a text one cannot use a pronoun to refer to
something that has not been mentioned before, or readers will be confused. An
example might be:

She lived in a castle. A princess was the daughter of parents.

Also, if the full name reference and the pronominal reference are too far apart,
the reader will be confused and he will be unable to relate the two occurrences
of the same concept. An example is given in the following text:



A princess lived in a castle. She was the daughter of parents. She
loved a knight. She was pretty. She was blonde. They lived in it.

The heuristic used by the agent relies on using a pronoun if the concept in
question is one of the last two concepts mentioned by their full name. A possible
result would be:

message(0,0,[character(ch26,princess),

relation(ch26,l14,live),

location(l14,castle)])

message(0,1,[character(ch26,princess,pron),

relation(ch26,ch25,love),

character(ch25,knight)])

message(0,2,[character(ch26,princess),

isa(),

attribute(ch26,pretty)])

KnowledgeAgent The Knowledge Agent enriches some of the concepts using
the attributes that they have associated in the knowledge base. This agent has
an associated probability value, and it decides whether to enrich a concept or
not based on that probability. This value must be chosen with care. If it is too
small, the text will have very few adjectives, and if it is too high the text will
have redundant mentions of certain attributes.

An example of the operation of this agent is given below. In this case, at-
tributes have been added to the reference to the castle, but not to the reference
to the princess.

message(0,0,[character(ch26,princess),

relation(ch26,l14,live),

location(l14,castle,[attribute(strong)])])

AggregateAgent The Aggregate Agent aggregates some of the descriptions
in the text to other occurrences of the concepts that they correpond to. In
order to achieve this, it searches in each paragraph for messages of the type “X
is Y”, and it aggregates the attribute appearing in the message with an earlier
occurrence of the given concept in the same paragraph. This is done in some cases
and not in others according to a probability associated with the agent. If the
aggregation is performed, the message containing the description is eliminated
from the paragraph.

An example of the results that this agent may generate from the initial
messages read is given below. The probability used in this case is 0.5.

message(0,0,[character(ch26,princess,[attribute(pretty)]),

relation(ch26,l14,live),

location(l14,castle)])



DisaggregateAgent The Disaggregate Agent carries out a task complemen-
tary to that of the AggregateAgent. It disaggregates some of the attributes of
a concept and it inserts into the text a separate message describing them of the
type “X is Y”. In each paragraph it checks all the concepts that have an asso-
ciated list of attributes, and - again according to a predetermined probability
- it decides to disaggregate some of them. If it decides to disaggregate a given
attribute, it eliminates it from the list of attributes associated with the con-
cept and it adds a descriptive message following the message where the concept
occurred.

An example of the operation of this agent - with a probability of 0.5 - and
starting from the example presented in the description on the KnowledgeAgent,
would be:

message(0,0,[character(ch26,princess),

relation(ch26,l14,live),

location(l14,castle)])

message(0,1,[location(l14,castle),

isa(),

attribute(l14,strong)])

4.3 Experiments and Results

The OAA architecture provides mechanisms for monitoring and refining the
implemented agents. Each agent can be manually switched on or off. These
mechanisms have been used to perform some experiments over the implemented
multi-agent system.

Although the OAA architecture is intended to make the agents independent
from one another, there are some restrictions that must be taken into account.
The first agent that should be called is the ReferringAgent, for without the
input data the rest of the agents can do nothing. However, as this agent sends
a request to the system for reading or writing a file, the FileAgent must have
been called beforehand, so that it can reply to the requests presented by the
ReferringAgent.

The other four agents of the system can be called in any order, and even called
repeatedly. Given the probabilistic factors involved, and the fact that messages
are added or eliminated in some cases, the result of system operation will vary
depending on the order in which the agents are called. A clear example is the
possible interaction between the DisaggregateAgent and the KnowledgeAgent.
If the first one is called before the second one, very few disgregations will be
performed on the text, since the concepts initially have no associated list of
attributes. On the other hand, it the KnowledgeAgent has already been called,
there will be more concepts with associated attributes, and the action of the
DisaggregateAgent will be more visible.

Another issue to be taken into account is that of pronouns. Each of the
agents operates over the concepts without considering whether they will be fi-
nally realised as pronominal references, so in theory messages such as “Pretty



she loved a knight” are possible. Since this sort of sentence is ungrammatical, in
such situations the system will ignore any attributes associated with the concept
described by a pronoun. This gives rise to correct sentences such as “She loved
a knight”.

5 Discussion

The results obtained from the operation of the multi-agent system have been
compared with those of an existing application, ProtoPropp [11], and it evolu-
tionary version EvoProtoPropp [12]. ProtoPropp is a system for the automatic
generation of stories that reuses a case base of previous stories to produce a new
one that matches the user’s requests. The system operates over a knowledge base
organised as a taxonomy. This knowledge base or ontology includes the charac-
teristics of the concepts and the relations that exist between them. The data
structure that the system outputs is plot plan, in which a skeleton of the plot
is described in terms of the elements of the ontology that the system handles -
characters of the story, locations for the action, events that take place... From
this, the textual representation of the story is obtained.

In the generation module of ProtoPropp the referring expresions to be used
for each concept are determined using a very simple heuristic: the first time that
a concept appears in a paragraph, the generator uses its full name, and for all
subsequent occurrences in that paragraph it uses a pronoun. The problem with
this method is that two appearances of the same concept may be quite far apart
within the same paragraph, so the reader is confused when reading the text. The
generation module of ProtoPropp does not aggregate concepts and attributes.
A fragment of text generated by ProtoPropp is the following:

A princess lived in a castle. She loved a knight. She was pretty. She
was blonde. It had towers. It was strong.

EvoProtoPropp is an implementation of ProtoPropp in which the tasks of
referring expresion generation and aggregation are carried out using Evolution-
ary Algorithms. The same fragment given above, if generated by EvoProtoPropp
would come out as:

A pretty princess lived in a strong castle. She loved a brave knight.
The princess was blonde. The castle had towers.

Using the multi-agent system described in this paper, that same fragment of
text is generated as:

A princess lived in a strong castle. She loved a brave knight. The
princess was pretty. She was blonde. The castle had towers.

Both EvoProtoPropp and the multi-agent system improve the results of Pro-
toPropp, resulting in a better use of adjectives and more referential coherence
of the final text.



A possible further improvement would be to introduce an additional agent
responsible for checking that the text fulfills a set of restrictions before accept-
ing it as valid. The current implementation may result in redundant uses of
attributes, like in “The pretty princess was pretty”. Problems of coherence may
also arise in cases where two occurrences of the same concept appear associated
with different attributes, as in “The pretty princess lived in a castle. The blonde
princess loved a knight”. This situation might erroneously suggest that there are
two different princesses in the generated story, even if the underlying data imply
a pretty blonde princess.

Another issues to be tested is the concurrent operation of the agents. The
current implementation relies on the agents being called in any order, but no
two at the same time. The OAA architecture allows the definition of triggers
over the data, so that an agent may learn when data over which it has already
worked are modified by another agent. This could lead that agent to revise the
data in order to apply its functionality again.

6 Conclusions and Future Work

The first experiments concerning the optimization of Referring Expresion Gen-
eration and Aggregation tasks have given promising results. Each agent is re-
sponsible for very specific issues within these tasks. This results in a very flexible
solution, so that users may call all or any of these tasks separately with great
ease.

The positive results of this experiment opens the doors to considering the
application of similar solutions to other aspects of NLG, such as the organisation
of a generation system in modules, or the definition of its control flow. There
are many ways of organising a natural language generation system, and their
advantages and disadvantages are still subject to discusion [4, 13]. One can find
singnificantly different architectures according to their division into modules or
the topology of the connections between them. In [4] several of these architectures
are discussed in detail, and all of them show advantages and disadvantages. The
developer of an NLG application must consider a wide range of architectural
solutions, for each one of them may be relevant for some particular aspect of his
problem.

The cFROGS architecture [14] aims to provide a possible NLG application
developer with the necessary infrastructure to facilitate his task as much as
possible. This is achieved by providing generic architectural configurations for
the most commonly used configurations used in this type of system. cFROGS
identifies three basic design decisions when building a generation system: the set
of modules to use, the flow of control that handles those modules, and the data
structures that pass from one module to another.

The idea of a multi-agent system may be adapted to an architecture such
as cFROGS from two different points of view. On one hand, the agents may be
used as wrappers for modules of an NLG system implemented in cFROGS, so
that the flow of control that governs them is the OAA architecture itself. The



NLG systems implemented according to this structure would have similarities
with a blackboard architecture. On the other hand, a single module within a
cFROGS architecture might be a wrapper for an OAA architecture, responsible
for starting both the Facilitator and the rest of the agents as necessary.

References

1. Reiter, E., Dale, R.: Building Natural Language Generation Systems. Cambridge
University Press (2000)

2. Goldberg, E., Driedger, N., Kittredge, R.: Using natural-language processing to
produce weather forecasts. IEEE Expert: Intelligent Systems and Their Applica-
tions 9 (1994) 45–53

3. Callaway, C., Lester, J.: Narrative prose generation. In: Proceedings of the 17th
IJCAI, Seattle, WA (2001) 1241–1248

4. DeSmedt, K., Horacek, H., Zock, M.: Architectures for natural language genera-
tion: Problems and perspectives. In Ardoni, G., Zock, M., eds.: Trends in natural
language generation: an artificial intelligence perspective. LNAI 1036. Springer
Verlag (1995) 17–46

5. Ferber, J.: Multi-Agent Systems: An Introduction to Distributed Artificial Intelli-
gence. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA (1999)

6. Reiter, E., Dale, R.: A fast algorithm for the generation of referring expressions. In:
Proceedings of the 14th conference on Computational linguistics, Nantes, France
(1992)

7. Kibble, R., Power, R.: An integrated framework for text planning and pronominal-
ization. In: Proc. of the International Conference on Natural Language Generation
(INLG), Israel (2000)

8. Palomar, M., Ferrández, A., Moreno, L., Mart́ınez-Barco, P., Peral, J., Saiz-Noeda,
M., Muñoz, R.: An algorithm for anaphora resolution in spanish text. Computa-
tional Linguistics 27 (2001) 545–567

9. Reape, M., Mellish, C.: Just what is aggregation anyway? In: Proceedings of the
7th EWNLG, Toulouse, France (1999)

10. Martin, D.L., Cheyer, A.J., Moran, D.B.: The open agent architecture: A frame-
work for building distributed software systems. Applied Artificial Intelligence 13

(1999) 91–128 OAA.
11. Gervás, P., Dı́az-Agudo, B., Peinado, F., Hervás, R.: Story plot generation based on

CBR. In Macintosh, A., Ellis, R., Allen, T., eds.: 12th Conference on Applications
and Innovations in Intelligent Systems, Cambridge, UK, Springer, WICS series
(2004)

12. Hervás, R., Gervás, P.: Uso flexible de soluciones evolutivas para tareas de gen-
eración de lenguaje natural. Procesamiento de Lenguaje Natural 35 (2005) 187–194

13. Reiter, E.: Has a consensus NL generation architecture appeared, and is it psy-
chologically plausible? In McDonald, D., Meteer, M., eds.: Proceedings of the 7th.
IWNLG ’94, Kennebunkport, Maine (1994) 163–170

14. Garćıa, C., Hervás, R., Gervás, P.: Una arquitectura software para el desarrollo
de aplicaciones de generación de lenguaje natural. Procesamiento de Lenguaje
Natural 33 (2004) 111–118


