A Logic Programming Application for the
Analysis of Spanish Verse

Pablo Gervés

Departmento de Inteligencia Artificial,
Universidad Europea de Madrid,
Villaviciosa de Odén, Madrid 28670,

pg2@dinar.esi.uem.es

Abstract. Logic programming rules are provided to capture the rules
governing formal poetry in Spanish. The resulting logic program scans
verses in Spanish to provide their metric analysis. The program uses
DCG grammars to model the division of each word into syllables, and
additional predicates are employed to define metric phenomena such as
synaloepha, syllable count of a verse, rhyme of a word... The system
is tested over a set of Spanish Golden Age sonnets and shown to give
reasonable results, providing a very useful pegdagogical application for
teaching Spanish poetry.

1 Introduction.

Logic programming has provided many tools for natural language processing
(see [1,11]). It has been applied with success in various fields like generation,
understanding, parsing, and semantic representation. The present paper extends
the application of logic programming to natural language processing beyond
everyday language. Logic programming rules are provided to capture the rules
governing formal poetry in Spanish. The resulting logic program scans verses in
Spanish to provide their metric analysis. As such it constitutes a useful tool for
literary study of Spanish poetry, or as a pedagogical tool for teaching students
how Spanish poetry is analysed. The system is tested over a set of Spanish
Golden Age sonnets and shown to produce good results.

The system has immediate aplication as a pedagogical tool to help in the
process of teaching Spanish poetry and metric at school and university level.
As well as scanning metrically a set of verses, the system allows easy location
of places where the poet has used poetic licenses such as hiatus, dieresis and
syneresis, thereby providing a good tool for stylistic analysis of texts.

2 Description of the problem.

Formal poetry in Spanish is governed by a set of rules that determine a valid
verse form and a valid strophic form. A given poem can be analysed by means
of these rules in order to establish what strophic form is being used. Another

set of rules is applied to analyse (or scan) a given verse to count its metrical
syllables. This paper presents a logic programming application that carries out
this analysis. The program uses DCG grammars to model the division of each
word into syllables, and additional predicates are employed to define metric
phenomena such as synaloepha, syllable count of a verse, rhyme of a word...

2.1 Parsing the Syllables in a Word.

As a starting point the process of scanning a verse requires a preliminary decom-
position of the verse into syllables. These syllables, as understood by the layman
with no notions of formal analysis of poetry, do not match metric syllables, but
they constitute the starting point of the analysis. The Spanish language presents
advantages over other languages in this respect in the sense that one can work
out the division of a word into syllables algorithmically from the way it is writ-
ten. The process of parsing the list of letters corresponding to a word in order
to generate a list of syllables applies a set of ortographical rules governing the
way letters are grouped together into syllables (see [8,7]). These rules have to
be taken into account when parsing automatically. The next step in the process
of scanning a verse is to take into account metric considerations that transform
this initial list of syllables into metric syllables, and to generate a count of met-
ric syllables in the verse. These processes depend on the position of the stressed
syllables of each word.

2.2 Locating Stressed Syllables.

The accents that need to be counted are not those that are usually represented
by a slanted dash over a word. Every word has its own prosodic accent, and
this is placed over the silaba ténica, the one that carries the stress when it is
pronounced. Spanish does have a set of rules that allow automatic location of
the stressed syllable of a word from its written form (see [8]). This is important
because it allows analysis with no need for a lexical entry for each word in the
verse.

According to the distance from the stressed syllable to the end of the word,
words are classified into three different types:

— palabras agudas, or oxytone words, those in which the stressed syllable is the
last syllable of the word

— palabras llanas , or paroxytone words, those in which the stressed syllable is
the one before the last syllable of the word

— palabras esdrujulas , or proparoxytone words, those in which the stressed
syllable lies two syllables from the end of the word

2.3 Metric Syllable Count.

In working out the count of metric syllables of a verse the concept of syllable
involved differs slightly from its everyday equivalents. A metric syllable does not

always match the corresponding morphological syllable. When a word ends in a
vowel and the following word starts with a vowel, the last syllable of the first
word and the first syllable of the following word constitute a single syllable. This
is known as synaloepha (see [7], or [13] for an overview in English), and it is one
of the problems that we are facing. For instance, the following list of syllables
for a verse

bés - te - te a - mor lo que ha por mi pa - sa - do
13 syllables

turns into the list of metric syllables:

bas - te - te_ a - mor lo que _ ha por mi pa - sa - do
11 syllables

because it shows two instances of synaloepha (marked in bold).

Another phenomenon that affects the syllable count is given by the position
of the accent of the last word a verse (see [7], or [13] for an overview in English).
If the last word is a palabra llana (stress one syllable from the end) the verse is
considered to have as many metric syllables as it has morphological syllables.

to - dos sen - ti - dos hu - ma - nos
8 metric syllables

If the last word is a palabra aguda (stress right at the end) the verse is
considered to have one more metric syllable than it has morphological syllables.

A - si, con tal en - ten - der
7 + 1 = 8 metric syllables

If the last word is a palabra esdrijula (stress two syllables from the end) the
verse is considered to have one metric syllable less than it has morphological
syllables.

A - mor, tus fuer - zas ri - gi - das
8 - 1 = 7 metric syllables

2.4 Distribution of Stressed Syllables.

The considerations presented so far describe how a division of a verse into metric
syllables and the corresponding metric syllable count is obtained. Formal analysis
of poetry also studies the position of stressed syllables over a verse. For the verse
to sound pleasing, the prosodic accents must be distributed according to precise
patterns. This distribution of prosodic patterns provides the quality of being
pleasant to the ear.

For instance, for an eleven syllable long verse to sound pleasing, it needs some
of the stressed syllables of its words to fall on certain specific positions. It is not

necessary for the stressed syllables of every word in the verse to be in specific
positions. It is enough for certain strategic syllabic positions within the verse to
have a stressed syllable. There are four accepted combinations that produce the
required prosodic effect (see [7,13]).

1) Stressed syllables fall on positions 1, 6 and 10. The verse is then referred as an
endecasilabo enfdtico. In the following examples, one such verse is first given in
its original form, followed by a divided version in which words have been split up
into syllables and syllables from adjoining words are linked together whenever
synaloepha has occurred. Syllabic positions are numbered in the line below, and
stressed syllables falling in key positions are marked out in bold

bas- te- te_ a- mor lo que _ ha por mi pa- sa- do
1 2 3 4 5 6 7 8 9 1011

2) Stressed syllables fall on positions 2, 6 and 10. The verse is then referred
as an endecasilabo heroico. For instance ”en verdes hojas vi que se tornaban”:

en- ver- des ho- jas vi que se tor- na- ban
1 2 3 4 56 78 9 10 11

3) Stressed syllables fall on positions 3, 6 and 10. The verse is then referred as
an endecasilabo melddico. For instance”a la entrada de un valle, en un desierto”:

a la_ en- tra- da de_ un va- lle_ en un de- sier- to
1 2 3 4 5 6 7 8 9 10 11

4) Stressed syllables fall on positions 4, 6 or 8, and 10. The verse is then
referred as an endecasilabo sdfico. For instance, the verse ” que con lloralla cresca
cada dia”:

que con llo- ra- lla cres- ca ca- da di- a
1 2 3 45 6 78 91011

Once a verse has been scanned, and the stressed syllables have been located
for every word in the verse, analysis of the positions of stressed syllables is a
simple matter.

2.5 Extracting Word Rhyme.

In order to identify the strophic form of a given poem it is important to identify
the rhyme of each verse. In Spanish (see [7,13]) the last vowel of the verse and
all the following letters (both vowels and consonants) are the same in verses that
rhyme. The rules described in the previous sections also allow determination of
the set of letters at the end of the word that constitute its rhyme.

2.6 Related Work.

Work along similar lines has been carried out for Italian Renaissance poetry
[9], French [3], Middle Indo-Aryan [4], and Old English [2]. In particular, [9]
discusses the need for metrically scanned electronic versions of classical texts,
and discusses the severe limitations of automatic procedures for marking accents
and counting syllables in the case of Italian. As a conclusion of this discussion,
an interactive program is suggested as the best means of scanning the text
metrically. Similar difficulties are met in [3] while dealing with French text.
French requires prior specific transcription of the written text into phonemes
before the metrical analysis can be carried out. The study of Middle Indo-Aryan
Prakrit in [4] presents an additional problem due to the fact that a special
character set is required for the language, so the text must be first be transcribed
onto Roman script. The work carried out on Old English in [2] concentrates on
analysis of phonological patterning, with particular emphasis on alliteration.

Spanish does not present as many difficulties as Italian or French, because the
phonetics of a word can be unambiguously obtained from its written form. This
includes word accents, since the language provides special means of representing
accents graphically. However, Spanish presents the additional difficulty of allow-
ing a number of poetic licenses concerning metrical scansion. This implies that
scansion of Spanish verse cannot be decided unambiguously without resorting to
the context. A verse scanned as 12 syllables may be re-interpreted as 11 syllables
long if it appears in the context of a poem built solely of 11 syllable long verses,
provided that the right conditions for poetic licence to occur are met.

Existing work on analysis of Spanish poetical texts, such as [10], applies
computational techniques to six main streams of research: sentential analysis,
word length analysis, running words analysis, word frequency analysis, use of
words analysis, and cluster analysis. At present we are not aware of any work
that concentrates specifically on the metrical analysis of Spanish verse.

3 The Logic Programming Implementation.

The analyser presented in this paper is implemented in SWI Prolog (see [12]).
In order to carry out the whole set of analyses required to decide whether a
given text is a correct poem, verses must be treated as lists of words, words
must be treated as lists of characters (later as lists of syllables) and syllables
as lists of characters. Prolog provides very useful mechanisms to process such
a representation. In this program, Definite Clause Grammars (DCG) (see [5])
have been used to encode the different stages of analysis. A detailed description
of the implementation of each step is given below.

The predicate that carries out the analysis of a single verse is implemented as
a predicate analysis. The predicate analysis obtains the following information
from a verse represented as a list of words: number of syllables after applying all
the rules, list of syllables in the verse, list of positions of stressed syllables, and
rhyme of the verse.

For instance, for the following call:

?- analysis([Cerrar,podra_,mis,ojos,la,postrera],N,Ls,La,Ri).

the system would return the following results:

N = 11

Ls = [Ce,rrar,po,dra_,mis,o0,jos,la,pos,tre,ra]
La = [2,4,5,6,8,10]

Ri = era

These items are obtained in two stages. To carry out the task in hand, the
system needs to know the following information about each word in the verse:
number of syllables, list of syllables in the word, position of stressed syllable of
the word, and rhyme of the word.

The first step during analysis is to check whether such information is available
in the system vocabulary (a database of facts) for all the words in the verse. If
data are missing for a given word of the verse, they are worked out from the
word using the rules as described below. The system adds this information to
the database of vocabulary facts available for metric analysis.

The second step starts when all data are available. The verse is analysed
recursively, using the data worked out for each word, and applying the metric
rules to scan the verse properly. Two types of analysis are possible: finding
the list of syllables of a word (and therefore the metric syllable count for the
verse), or finding the list of positions of stressed syllables (which determines the
correctness of the verse).

The division of the general process into two different stages gives the system
exceptional flexibility when confronted with new texts. On the one hand, any
unfamiliar word appearing in the text can be analysed to obtain the required
data. On the other hand, the system may resort to previously stored analysis
to avoid recomputation of the data for a specific word. This may have a dual
effect on the efficiency of the system, transferring the load from computation
time to memory requirements. And additional advantage lies in the fact that
there are many exceptions to the general rules implemented in the system. The
rules capture the general pattern of word formation of the Spanish language,
but many words borrowed from other languages but now fully accepted do not
conform to these rules. The particular structure proposed allows the relevant
data for problematic to be loaded into the system prior to its use, therefore
avoiding errors during the analysis due to exceptions to the rules appearing in
a text.

The rest of this section provides brief descriptions of the different processes
involved in the analysis.

3.1 Syllabic Analysis of a Word: Word Syllable Parser.

The Word Syllable Parser module takes as an input the list of characters of the
word to be analysed. The complete operation is carried out in three stages of
parsing.

Parsing Character Type. The first parse classifies each character (or group
of two characters) into one of 14 different categories according to its ability to
combine with other characters to form basic sound groups (double consonants,
consonants that can group with other consonants, high, low or middle vowels).
Information about vowel classification plays an important role in sorting out
syllable boundaries in diphthongs (see [7,13] for details). For instance, an r
following an ris grouped into a single 7 ’double consonant’ group. This grouping
is carried out by a DCG of 4 basic rules and 63 rules describing terminals. This
proliferation of rules for terminals is due to the fact that both upper and lower
case characters must be taken into account, and combinations of these in cases
of double consonants. Only the simplest examples of the grammar are presented
here. There are many variations and many exceptions to each rule (u after ¢ acts
as a single consonant, ns at the end of a syllable cannot be separated, double
consonants ch, rr, [l and pr need separate rules...).
Terminal elements of the grammar are defined as facts of the form:

vowel (va([al))-->[a]. /* a *x/
vowel (vm([e]))-->[e]. /* e x/
vowel (ve([i]))-->[i]. /* 1 %/
vowel (vu([u]))-->[u]. /* u x/
consonant (n([n]))-->[n].

consonant (cp([pl))-—>[p]. /* p *x/
consonant (c1([1]))-->[1]. /* 1 %/
consonant (c([v]))-->[v].
double_consonant(cd([c,h]))-->[c,h]. /* ch */
double_consonant(cd([r,r]))-->[r,r]. /* rr */

Vowels are classified into high (i,u), middle (e,0)or low (a). This information is
required to work out the behaviour of diphthongs (see [8]). Groups of different
vowels are grouped together into a single syllable (a dyphthong) when certain
circumstances are met. These circumstances are specified in terms of whether the
group of vowels is made up of different combinations of vowels from one group
or another, and whether the corresponding vowels are stressed or not. The rules
for the grouping of vowels into dyphthongs requrie this information at a later
stage, so the distinction is noted during this stage of the analysis.

The vowel u requires special treatment because it also acts as auxiliary to
consonants ¢ and q.

Consonants are classified according to their ability to form different letter
groups either with other consonants (groups ns, *r, *1...) or with specific vowels
(groups qu, gu...). Letters with different combination properties are identified as
members of the specific group and marked as such at this stage. In each case, a
functor is generated that identifies the type of letter considered, and contains the
letter itself (in list format if it is a complex letter such as a double consonant)
as an argument.

The rules of the grammar simply parse the input assigning categories to each
group of letters:

parse_letters([1)-->[].
parse_letters([X|Rest])-->double_consonant (X),
parse_letters(Rest).
parse_letters([X|Rest])-->consonant (X),
parse_letters(Rest).
parse_letters([X|Rest])-->vowel(X),
parse_letters(Rest).

Parsing Character Groups. The second parse operates over the output of
the first and joins together basic sound groups that make up either a consonantal
group or a vowel group. For instance, pr, gl, ns, group together as consonants;
and vowels are grouped into diphthongs or triphthongs according to the rules.
This DCG has 60 rules. The basic rule for this level of analysis (identifying
groups of consonants and groups of vowels) is defined as:

group_letters([1)-->[].
group_letters ([X|Rest])-->group(X),group_letters(Rest).

The rest of the rules take the form:

group (cons (X))-->[cd(X)].
group (cons (X))-—>[c(X)].

group (gv (X)) -->[va(X)].
group (gv([A,B]))-->[vc([A]l),vm([B])].

Certain cases require a step of look-ahead in order to make the right decision.
For instance, the rules for g, u combinations before ¢ and e (in which cases the
u is silent); or cases where a certain combination of vowels forming a diphthong
is broken by the graphic accent of tilde!. For instance, the combination of a low
vowel and a stressed high vowel, such as ...a7... does not form a dyphthong and
should be parsed into two syllables, whereas the combination of a stressed low
vowel and a high vowel, such as ...di... does, and should be parsed into the same
syllable.

group(cons ([G,U]), [gr([G]),vu([U]),vm([el)[X], [vm([e]) |X]).
group(cons ([G,U1), [gr(LGI),vu(lUl),vc(lil)IX], [vc([il) IX1).

% dyphthong
group(gv([A,T,B]))-->[va([A]),ac([T]),vu([B])].

% no dyphthong (requires lookahead)
group(gv(A), [va(A),vc(B),ac(T) IX], [ve(B) ,ac(T) |X]1).

! The tilde is represented in the system as an ac(T) functor.

The examples presented here are only a selection of particular instances of
the type of rule discussed in each case.

Parsing Syllables. The third parse takes as input the list of consonant and
vowel groups and tacks together those that form valid syllables. This DCG has
14 rules. The basic structure of this grammar is:

find_syllables --> syllable,find_syllables.
find_syllables --> [],!.

syllable -->initial_consonant,vowel_group,final_consonant.
syllable ——>initial_consonant,vowel_group.

syllable ——->vowel_group,final_consonant.

syllable -->vowel_group.

These rules include an additional argument which returns the list of the
syllables found for the word, each one converted into a Prolog atom.

Locating the Stressed Syllable of a Word. Simple Prolog predicates carry
out the task of locating the stressed syllable of a given word, taking as input
the list of syllables. The representation in use includes a notation symbol for
the tilde, used in Spanish orthography to help locate stressed syllables using a
few simple rules. This rules are taught to every primary school student (and
forgotten regrettably fast!). For a detailed reference, see [8].

Extracting the Rhyme of a Word. The rhyme of a word is given by the
fragment of the word that lies beyond the last stressed vowel of the word. The
rhyme of each word is obtained by a predicate obtain _rhyme that operates over
the list of syllables for that word. Taking into account the location of the stress
in the word, it truncates the stressed syllable to obtain its tail (from the stressed
vowel to the end) and it appends to it all the remaining syllables to the end
of the word. The procedure is made up of three rules. Each rule deals with one
possible stress pattern for the word. Every rule works by locating the last stressed
syllable, applying the predicate end_of_syllable (which returns the portion of
the syllable which lies beyond the last stressed vowel), and joins it together with
any remaining syllables between the stressed syllable and the end of the word.

The information about the rhyme of a word is also included in the fact stored
for it in memory. Therefore, during the metric analysis of a verse, identifying
the rhyme of a word involves just querying the vocabulary database.

Managing the Vocabulary Database. The system operates with a vocab-
ulary database that is declared in the form of Prolog facts. When the system
reads a word, whether during selection of rhymes or during the writing of a
draft, it consults the vocabulary database. If the word is not found, the required
procedures are invoked to obtain the necessary information.

This information is stored as facts of the form:

known_word(1,ar, [ce,rrar],no,no,cerrar).

where: the first argument 1 shows the position of the stressed syllable from the
end of the word, ar is the rhyme of the word, [ce,rrar]is the list of syllables of
the word, the first no indicates whether the word starts with a vowel, the second
no indicates whether the word ends with a vowel, and the final argument cerrar
is the word itself, to be used as key when retrieving the rest of the information.

If a given word in the text was not present could not be found in the database,
the results of the analysis are declared in memory in the same format as existing
items in the database. At the end of a session, the system allows the updated
database to be saved. This makes the result of all new words that have been
already parsed available in database form for later analyses.

This method allows the option of starting the system with an empty vocabu-
lary database each time (thereby optimising memory use), or to build the vocab-
ulary database incrementally by loading a previous version before the analysis
of each new text. This second option implies growing memory requirements for
subsequent executions, but improves the computational efficiency of the analysis.
It has the additional advantage of progressively building a vocabulary database
of metrically analysed Spanish words.

3.2 Metric Analysis of a Verse: The Metric Syllable Counter.

The metric syllable counter is defined as a set of Prolog predicates that operate
recursively over the list of words in a verse. All the information about the division
into syllables and the location of the stressed syllable obtained for a given word
during previous two stages is declared in memory as Prolog facts. In this way,
while processing each word in the verse the syllable counter has access to the
list of syllables of the word and the position of the stressed syllable. From this
information it can also determine easily whether a word starts or ends with a
vowel.

Counting the Metric Syllables in a Verse. The predicate word_analysis
works out the scansion of the verse and it returns a list of metric syllables
corresponding to that verse, as well as the number of syllables found in the
verse.

A simple predicate synaloepha implements the decision rule for synaloepha,
and appends two contiguous syllables whenever necessary. This is done by means
of two auxiliary predicates (start_vowel y end vowel) that identify whether
a word starts or ends with a vowel. When processing a word, the final syllable
of the previous word is carried over, together with a variable indicating whether
it ended in a vowel or not. The last syllable of the previous word is treated as if
it were part of the word. According to the variable one or the other rule of the
procedure is used. If synaloepha takes place, the rule that requires the previous
word to end in a vowel simply acts as an interface, calling the other version with
the corresponding alterations of the list of parameters: the number of syllables
found so far is reduced by one, and the last syllable of the previous word and

the first syllable of the present one are fused into a single syllable. Since this
operation is carried out recursively, two syllables appended in this way may yet
be appended to a third one if the conditions are right. This is quite common
when one vowel articles such as a occur between words that finish and start with
vowels. This method requires special attention to be paid to border situations.
For the first call (at the beginning of a verse) an additional ghost syllable must
be added. This ghost syllable must be eliminated from the final list of syllables
at the end. In the same way, for the last call (which would given the empty list as
a result) the last syllable of the previous word must be returned as sole member
of the list of syllables found, to ensure that it is not lost.

The predicate reevaluate takes into account the effect on the count of metric
syllables of the verse (as opposed to prosodic ones) of the position of the stressed
syllable of the last word. It has three different versions, one for each possible
pattern of stress placement. They all carry out basic arithmetic operations over
the resulting number of syllables: subtract one if the last word is proparoxytone,
leave as it is for a paroxytone word, add one for an oxytone word.

A similar predicate, accent_analysis, operating over the same list of words
for the verse and using the information facts in memory for each word, translates
the list of words into a list of stressed syllable positions. This process is parallel to
the one carried out when creating the list of syllables, with a numerical counter
taking the part of the syllables.

Using Results to Validate a Verse. Over the results of the analysis, a
diagnostic of the correctness of the verse can be obtained by pattern matching
with a set of valid patterns declared in memory. The predicate conclusions
takes the obtained results and works out whether the verse under analysis is
valid as endecasilabo. If it is, the type of endecasilabo is identified by checking
the positions of the stressed syllables.

In the example above, the verse:

Cerrar podra mis ojos la postrera

is an endecasilabo herdico, because it is eleven syllables long (N = 11)and its
list of positions of stressed syllables (La = [2,4,5,6,8,10]) contains the key
positions 2, 6, 10.

4 Evaluation of the system.

The system has been evaluated over a set of classical poems. The number of
incorrect analyses is worked out as a percentage. Specific sources of error are
identified and their contribution to the general error is discussed. In each case,
possible solutions are discussed.

4.1 The choice of test data

The system has been tested over a set of 64 classic Spanish Golden Age sonnets
(taken from [6]). These sonnets were fed to the system in separate files containing
the sonnets by different authors. The system output a file with the syllable count,
list of syllables, list of stressed positions, and rhyme for each of the given verses.
Sonnets were chosen as benchmark poems because they have a very rigid formal
structure. Every verse in a Spanish sonnet must be 11 syllables long according
to the rules. Over the resulting files, verses that had been assigned by the system
a syllable length other than 11 were hand checked for errors.

4.2 The results

The results obtained are presented in table 1.

Table 1. Raw Results

Author Sonnets Verses Errors % Error

Quevedo 21 294 31 89.5
Lope 16 224 17 92.4
Géngora 11 154 19 87.7
Garcilaso 8 112 21 81.3
Boscan 3 42 2 95.2
Aldana 5 70 11 84.3
Totals 64 896 101 88.7

4.3 The problem of poetic license

A poet is allowed a number of poetic licences to make the verses fit into the
metric structure. These poetic licences are known as syneresis, dieresis, and
hiatus (see [13] for details). Of these, dieresis allows a diphthong to be broken
(adding one syllable to a given word), syneresis allows an illegal diphthong to
be created (subtracting a syllable to a word), and hiatus allows synaloepha to
be broken (adding a syllable to a given verse). Resolving issues of poetic license
presents special problems because the main idea behind the concept is too allow
the same verse to be parsed as having a certain length in one specific context
and as having a different one in another. This is achieved by overlooking or
enforcing two different metric rules: the rules for synaloepha and the rules for
dyphthong formation. Two syllables that might constitute synaloepha (or two
vowels making a dyphthong) and be parsed as one under normal conditions can
exceptionally be broken up if the poet needs an extra syllable to his verse at that

stage, resulting in hiatus (or dieresis). Alternatively, syllables (or vowels) that
would be parsed as separate may be parsed as a unit if the poet wants one syllable
less, resulting in hiatus (or syneresis). The fact that correct solutions are context
dependent means that they cannot be implemented for isolated verses, but only
when verses are scanned as part of a whole poem, in which case, the metric rules
for the poem impose specific lengths on verse. In a wider setting, these poetic
licenses can easily be solved by rephrasing synalopeha and dypththong rules as
defeasible inferences (or simply allowing the implicit backtracking in Prolog to
find the alternative solution).

The system as it stands allows easy location of poetic licenses, which gives
added-value when analysing poetry. The results for poetic licenses obtained for
the test data are presented in table 2. The number of poetic licenses taken in
each set of poems is listed for each kind. The percentage of error when problems
of poetic license are discounted is also shown. A great improvement in system
efficiency is appreciated.

Table 2. Poetic Licenses

Author Verses Hiatus Dieresis Syneresis Total Real % error

Quevedo 294 5 1 1 7 97.6
Lope 224 6 2 1 96.0
Gongora 154 3 4 4 11 92.9
Garcilaso 112 10 2 2 14 87.5
Boscén 42 0 0 0 100
Aldana 70 2 3 1 6 914
Totals 896 26 12 9 47 94.8

4.4 Detected errors and planned improvements

The most important source of real errors is the conjunction y, which can act
both as a vowel and as a consonant. This creates problems when determining
whether synaloepha is possible or not between words. The rules for synaloepha
must be redesigned to acoutn for these variations.

The remaining errors can be attributed to exceptions in diphthong formation
rules. Although there are generally accepted rules governing diphthong forma-
tion, certain cases constitutes exceptions (for historical or etymological reasons).
Foreign words that have been accepted into Spanish also constitute exceptions
to the syllabic rules. The fact that the system keeps a database of facts for the
words in its vocabulary allows exceptions to the rules to be declared directly
into the database. In this way, known exceptions can be included from the start,
thereby improving the accuracy of the system.

Table 3 shows final results for the system once problems of poetic licence and
probles related with conjunction are excluded.

Table 3. Final Results

Author Sonnets Verses Y Errors % Error

Quevedo 21 294 20 98.6
Lope 16 224 7 99.6
Géngora 11 154 8 100
Garcilaso 8 112 6 99.1
Boscan 3 42 2 100
Aldana 5 70 5 100
Totals 64 896 48 99.3

5 Conclusions and Further Work.

Several conclusions can be drawn from the above observations. On one hand, the
logic programming tools used to implement the system have demonstrated their
power and flexibility in coping with a complex problem of symbolic processing.
On the other hand, the system shows potential both in the fields of literary
analysis of large texts, and in the field of teaching.

5.1 Advantages of Logic Programming for the Task.

The problem tackled in this paper presented a complex structure of several
layers of analysis (at character level, at character group level, at syllable level,
at the level of words in a verse), each implemetned as a DCG. Solutions with
fewer layers are possible, and some have been tested during the development of
the system, but were rejected because of the excessive amount of backtracking
required whenever information from bottom layers affects the decision process
in top layers.

The declarative nature of logic programming, and the modular design of
the program (with general rules set distinctly apart from specific data for a
given word in the vocabulary database) allows very easy encoding of exceptions.
It also allows the system to act both as a parsing tool and as a vocabulary
database generator. None of these advantages would have been available in an
imperative implementation of the system, even though such an implementation
would possibly carry out the parsing problem more efficiently if all the different
cases were coded. The modularity of the program allows easy modification and
might allow reuse of some parts of the code for languages with similar phonetic
structure.

5.2 The System as a Practical Tool.

The system is shown to give very good results over a basic sample. Although
a considerably bigger sample would be required for a proper validation of the
system, the fact that different authors (and therefore different vocabulary and
different use of poetic licence) are involved improves the significance of the result.

It is also important to note that although the system is based on linguistic
rules for contemporary Spanish, the results are good even when applied to the
work of Sixteenth Century poets — which speakers of modern Spanish some-
times find obscure. This shows that the system is not dependent on the specific
database of vocabulary facts that it starts with, and it can reasonably be ex-
pected to cope with new words however alien to contemporary speakers (as long
as they conform to the rules).

The system may be put to practical use as an autonomous analysis tool (as
a first approximation to block analysis of texts), or as a pedagogical tool in
teaching environments.

References

1. Allen, J. : Natural Language Understanding, London, Benjamin/Cummings (1995).

2. Barquist, C.R., Shie, D.L.: Computer Analysis of Alliteration in Beowulf Using
distinctive Feature Theory. Oxford Journal of Literary and Linguistic Computing,
vol. 6, no. 4 (1991).

3. Beaudoin, V., Yvon,F.: The Metrometer: a Tool for Analysing French Verse. Oxford
Journal of Literary and Linguistic Computing, vol. 11 no. 1 (1996).

4. Ousaka, Y., Yamazaki, M.: Automatic Analsyis of the canon of Middle Indo-Aryan
by personal computer. Oxford Journal of Literary and Linguistic Computing, vol.
9, no. 2 (1994).

5. Pereira, F.C.N. and Warren, D.H.D.: Definite Clause Grammars for Language Anal-
ysis: a Survey of the Formalism and Comparison with Augmented Transition Net-
works. Artificial Intelligence, vol. 13, no. 3 (1980).

6. Pérez de la Cruz Molina, J.L., personal web page,
http://www.lcc.uma.es/personal/cruz/sonetos/pral.html

7. Quilis, A.: Métrica espanola, Ariel, Barcelona (1985).

8. Real Academia Espaiiola (Comisién de Gramatica): Esbozo de una nueva gramatica
de la lengua espanola, Espasa-Calpe, Madrid (1986).

9. Robey, D.: Scanning Dante’s the Divine comedy: a computer Based approach. Ox-
ford Journal of Literary and Linguistic Computing, vol. 8, no. 2 (1993).

10. Stratil, M., Oakley, R.J.: A Disputed Authorship Study of Two Plays Attributed
to Tirso de Molina. Oxford Journal of Literary and Linguistic Computing, vol. 2,
no. 3 (1987).

11. Saint-Dizier, P. Advanced Logic Programming for Language Processing, London,
Academic Press (1994).

12. Wielemaker, Jan, http://swi.psy.uva.nl/usr/jan/SWI-Prolog.html

13. Wiliamsen, V.G. and Abraham, J.T., Association for Hispanic Classical Theater
web page, ftp://listserv.ccit.arizona.edu/pub/listserv/comedia/poeticl.html

