
Computational Intelligence, Volume 33, Number 1, 2017

DECONSTRUCTING COMPUTER POETS: MAKING SELECTED
PROCESSES AVAILABLE AS SERVICES

PABLO GERVÁS

Universidad Complutense de Madrid, Madrid, Spain

The article explores the potential of redefining as services a number of functionalities involved in poetry gen-
eration systems to better serve the challenge of working toward a yet unknown successful computational model
of the creative task being addressed. This is performed by considering how some of the processes currently mod-
eled in existing systems for poetry generation might be deconstructed into a set of services susceptible of being
recombined in different ways to be integrated in other developments. Building on prior attempts to propose an evo-
lutionary architecture that allows integration of a number of artificial intelligence technologies in combination, this
article explores the advantages of service-oriented architecture for reimplementing as publicly available services
some selected functionality of the Wishful Automatic Spanish Poet (WASP) poetry generation system.

Received 30 August 2013; Revised 17 March 2015; Accepted 6 April 2015

Key words: computational creativity, poetry generation, articulation of generative systems, service-oriented
architecture.

1. INTRODUCTION

The development of computer software that exhibits creative behavior is faced with a
number of challenges. Out of these, two stand out as particularly relevant to the develop-
ment task. First, the development of creative software usually involves modeling cognitive
functions that are very complex in themselves, such as linguistic performance, emotional
perception, or analogy. This implies that complex software models of these functions may
need to be developed and combined together with domain-specific solutions for particu-
lar creative tasks. Second, such development efforts mostly explore uncharted territories of
human capability, for which no agreed models exist. This forces the development into the
realm of tentative exploration, where solutions for particular problems need to be hypothe-
sized, tested for conformance with desired behavior, and either adopted or rejected on the
basis of this testing. Both of these challenges constitute significant barriers to researchers
considering the possibility of working in the field. A body of computational models of
human cognitive functions or empirical implementations of equivalent behavior is progres-
sively being built by the concerted effort of the scientific community, and this may lower
the perceived barrier. Yet even if such computational models of particular functions were
available as reusable resources, the task of computational creativity research still faces the
challenge that many different combinations will have to be considered before a satisfac-
tory model of particular creative tasks is achieved. However, for this to occur, such models
would need to be available in a form that is easy to access and available at an accept-
able level of abstraction, so that scientists willing to use them need not become experts in
their low-level detail before they can apply them. Such a form should allow a reasonably
detailed description of the functionality to enable other users to identify easily what is being
offered, and whether it suits their needs. Additionally, the desired form should also allow
easy composition with other software modules, to facilitate exploratory construction.

Address correspondence to Pablo Gervás, Universidad Complutense de Madrid, 28040 Madrid, Spain;
e-mail: pgervas@sip.ucm.es

© 2015 The Authors. Computational Intelligence published by Wiley Periodicals, Inc.
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits
use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial
purposes.

http://creativecommons.org/licenses/by-nc/3.0/


4 COMPUTATIONAL INTELLIGENCE

This article explores this possibility by considering how some of the processes cur-
rently modeled in an existing creative system, the WASP poetry generation system, might
be deconstructed into a set of services susceptible of being reused as operational modules
of alternative solutions to the poetry generation task. To this end, some reflection is required
on how the designers of a generative system approach the task of breaking down the over-
all tasks into smaller elements that can play a significant role in the broader context of an
encompassing system.

The designer of a generative procedure for any particular artifact needs to define some
way of understanding the desired type of artifact in terms of properties it must satisfy, a
structure it must follow, or ingredients that may be used in its construction (Maeda 2001).
When the artifact is for a particular purpose, the designer may, during this process, focus
on particular elements that are more relevant to this purpose and pay less attention to other
elements. As a result of these choices, the complexity and the versatility of the result-
ing generative procedure are affected. This is a well-known problem in natural language
generation, where system designers have a broad range of options, from reusing canned
text if there is just a small set of messages to be conveyed repeatedly, relying on tem-
plates for message structure to be filled in with appropriate terms in each instance, or
devising a more elaborate characterization of the subset of language to be generated if bet-
ter coverage and fluency are desired (Reiter and Dale 2000). This initial analysis of the
target artifact with a view to selecting a particular frame for understanding and decompos-
ing it into parts that can later be used to assemble equivalent instantiations of the same
type has been called articulation (Gervás 2013a). This captures the concept of different
parts being joined together in a whole but also covers the concept of allowing the parts
to move with respect to one another, and even the concept of appropriately conveying a
desired meaning.

In the case of poetry generation, the problem of articulation is compounded by the
importance attributed to the form of the resulting text, added on top of the underlying
complexity of language. This opens up two possible approaches to defining the understand-
ing of poetry: from the point of view of language (grammar, vocabulary, and semantics)
and from the point of view of poetic form (stanzas and verses). Depending on the degree
of articulation of the generation procedure, some systems limit themselves to selecting
a particular textual template with which the poems are produced, starting from a limited
vocabulary, reusing a predetermined set of sentences or verses. The different systems for
poetry generation described in Section 2.3 apply different levels of articulation.

The degree of articulation captures the idea of how different levels of representation
may be used for content and form in each case. Content can be considered simply at the level
of texts (different texts have different content) or at an additional semantic level (a semantic
representation is used for meaning of a given text, which allows different texts to have the
same meaning). Form has historically been considered at many different levels: as metric
restrictions on the output (stress patterns and length in syllables for verses and number and
length of verses for stanzas), as poem templates to be filled (Oulipo 1981; Colton et al.
2012), as sets of verses to use (Queneau 1961), as sets of lexical items to use (Gervás 2001),
as a language model to follow (obtained from a reference corpus) (Kurzweil 2001; Gervás
2013a, 2013b), and as a semantic grammar (Veale 2013a). It is clear that many of these
ways of restricting form carry an associated set of restrictions on content. Additionally,
some of the reviewed examples consider specific ways of restricting content: as an input
sentence (Gervás 2001), a specification of the target semantics in first-order predicate logic
(Manurung 1999, 2003), as a word association network (Toivanen et al. 2012), as a mood
established from the newspaper of the day (Colton et al. 2012), and as a set of semantic
resources (Veale 2013a).



DECONSTRUCTING COMPUTER POETS 5

Articulation is also relevant at a higher level, if understood as the mechanism behind
the deconstruction that has to be applied to an existing process to reimplement it as a com-
bination of smaller modules, susceptible, for instance, of being deployed as services. In a
way, the deconstruction of the computational model of an existing process into submodules
that can be recombined to reconstruct the whole is itself a process of articulation in which
the artifact that is being decomposed into pieces is a generating procedure itself. In the par-
ticular case of poetry generation, many different combinations will have to be considered
before a satisfactory model of the poetry generation task is achieved.

There are therefore two axes of articulation when poetry generation systems are con-
sidered: one to describe how each system decomposes existing poems into basic units
that can be recombined to build new poems and one to describe how the system itself is
decomposed into modules that collaborate in the production of the resulting poems. In the
following section, these double axes of articulation are considered for a number of poetry
generation systems.

2. PREVIOUS WORK

This section presents an abstract high-level description of the type of services that are
being considered as targets of the modularization process, outlines some useful references
in terms of computational creativity that provide a basic vocabulary to discuss the phe-
nomena under study, and reviews a number of automated poetry generators from which the
techniques to build the system in the article are drawn.

2.1. Services as a Unit of Modularization for Software Systems

Services have become a popular means of organizing complex software systems (Ding
and Sølvberg 2004; Duan et al. 2005; Mahajan 2006; Dietrich et al. 2007; Dai et al. 2007).
This type of modularization is based on the concept of a service-oriented architecture.
A service-oriented architecture (SOA) is a way of reorganizing a portfolio of siloed software
applications and support infrastructure into an interconnected set of services, each accessi-
ble through standard interfaces and messaging protocols (Papazoglou 2003). This definition
involves several aspects that need to be considered separately. First, it addresses the need
to break away from information silos, understood as insular systems incapable of reciprocal
operation with other, related information systems (Ensor 1988). A SOA is designed to make
(selected) functionality that was previously only accessible internally to a given system
available beyond its borders. Second, it involves a process of reorganizing the implementa-
tion of the existing functionality in new terms better suited to the new purposes. Third, the
conceptual unit employed for this reorganization is that of a service, which implies a num-
ber of constraints that will be described in the succeeding text. Fourth, specific interfaces
and protocols have to be defined explicitly for this type of organization to succeed.

In more general terms, a SOA can be understood as an architectural model that aims to
enhance the efficiency, agility, and productivity of an enterprise by positioning services as
the primary means through which solution logic is represented in support of the realization
of strategic goals associated with service-oriented computing.

Within this view, a service is an atomic unit of modularization that provides a function-
ality, which is formally described and publicly available on the Web. Services have been
defined as self-describing, platform-agnostic computational elements that support rapid,
low-cost composition of distributed applications (Papazoglou 2003), although there is also
some debate as to whether an acceptable definition can be established (Jones 2005).

For the purpose of this article, only a broad characterization is required. Services can
be combined to build more elaborate functionalities, based on a number of basic properties:



6 COMPUTATIONAL INTELLIGENCE

� Services share standardized contracts: These contracts may need to specify all the
interfaces that a client of this service expects as well as the service interfaces that
must be provided by the environment into which the service is assembled/composed
(Papazoglou 2003).

� Services are loosely coupled: The service contract should not refer to particular charac-
teristics of the service consumers or of the underlying service logic and implementation.

� Nonessential information is abstracted: Users of the service need not know how the
service has been designed or implemented.

� Services are reusable: They are intended to be reused and engaged in new transactions.
� Services are autonomous: Ideally, a service should have control over its run-time

environment, and it should be possible to evolve the service without impacting
its consumers.

� Services minimize statefulness: A stateless service is one that provides a response after
your request and then requires no further attention. A stateful service is one where
subsequent requests to the service depend on the results of the first request. Services
where neither the client nor the service provider needs to keep track of the state of
one another are easier to manage. The need to consider state requires the addition of
transaction management.

� Services are discoverable: Service providers publish descriptions of their services, and
clients can search over these descriptions to select the most appropriate service for
their need.

� Services are composable: They represent meaningful functionality that can be assembled
into larger and new configurations depending on the need of particular kind of users.

The previous description constitutes an abstract high-level characterization of a service-
oriented architecture. Several technological solutions have been proposed for implementing
this abstract view. The article addresses the issue at a conceptual rather than techno-
logical level to discuss the merits of the concept of service-oriented solutions for the
particular problem of developing computational creativity systems in the domain of poetry
generation. For this reason, no details on technological implementation of the proposed
approach to modularity are considered. Of the four basic aspects involved in the defi-
nition given for a SOA, the key points for this article are the need to make available
functionality currently embedded within existing creative systems, the proposal of a
manner of reorganizing them to achieve this, and the concept of service as unit of artic-
ulation for this process. The provision of specific interfaces and protocols will be left
for further work, because it ideally should involve joint work with other researchers in
the field.

2.2. Computational Creativity

Computational creativity has evolved significantly from its early stages at the turn of
the century, and as its body of knowledge grows, two ideas become ever clearer: the diffi-
culties in reaching consensus on a definition of the field and its scope and the importance of
researching the topic in spite of this. The problems of defining creativity with enough rigor
have been addressed by recent reviews of the history of the field (Cardoso et al. 2009). The
most useful definition provided so far as a guiding principle for computational creativity
research development is the following:

The philosophy, science and engineering of computational systems which, by taking on
particular responsibilities, exhibit behaviors that unbiased observers would deem to be
creative. [Colton and Wiggins (2012)]



DECONSTRUCTING COMPUTER POETS 7

An important point in this definition—also touched upon in (Cardoso et al. 2009)—is
the fact that creativity lies on the eye of the beholder: objective measurement of computa-
tional acts in isolation is unlikely to result in valuable judgments on their creativity unless
some kind of observer volunteers an opinion (ideally an unbiased one). This presents a dif-
ficulty for pragmatic research because it implies a need for human evaluators to be involved
in assessing the degree of creativity of any given computational act. It also opens the field
to explore the creation of artifacts without necessarily modeling human behavior. The def-
inition speaks about responsibilities, but these responsibilities may be undertaken in forms
or procedures that a human might never have employed. A current of thought is progres-
sively gathering strength in favor of exploiting the possibilities for creativity that machines
provide, which are radically different from those available for humans. These observations
suggest that computational creativity would benefit significantly from advances that allow its
products easy exposure to a large population of observers, and advances that allow it to draw
on technological solutions that are not available to human creators. The implementation of
creative functionalities as composable services fulfills both of these requirements.

For the analysis of complex creative acts in terms of their constituents elements, some
recent theoretical proposal for understanding computational creativity software will be use-
ful. The FACE model (Colton et al. 2011; Pease and Colton 2011) presents a framework
to understand creative acts performed by software. It defines a creative act as a nonempty
tuple containing exactly zero or one instances of eight types of individual generative acts.
The eight types are defined in terms of four different target types: the expression of a con-
cept, a concept, an esthetic measure, or framing information. A concept is a procedure that
is capable of taking input and producing output, the expression of a concept is an instance
of an (input, output) pair produced when a concept is run. An esthetic measure is a function
that takes as input a concept or an expression and outputs a numerical score. Framing infor-
mation is a comprehensible explanation (in natural language) of some aspect of the tuple.
The eight types arise by distinguishing, for these four target types, between artifacts (gen-
erating instances of them) and processes (generating methods for producing instances). An
interesting aspect of the FACE model for the present endeavor is that it contemplates the
possibility for certain generative acts in a tuple to be undertaken by a third party.

Many efforts over the recent years that address the study of creativity from a compu-
tational point of view acknowledge as a predecessor the work of Margaret Boden (1990).
Boden proposed that artificial intelligence ideas might help us to understand creative
thought. One of Boden’s fundamental contributions was to formulate the process of creativ-
ity in terms of search over a conceptual space defined by a set of constructive rules. Sharples
(1996, 1999) brings together Boden’s computational analysis of creativity with insights on
the task for writing, understood as a problem-solving process where the writer is both a cre-
ative thinker and a designer of text. The account instantiates the various elements in Boden’s
analysis as ingredients in the domain of the writing activity. For Sharples, the universe of
concepts that can be explored in the domain of writing could be established in a genera-
tive way by exhaustively applying the rules of grammar that define the set of well-formed
sentences. The conceptual space over which a writer operates is a subset of this universe
identified by a set of constraints that define what is appropriate to the task at hand.

Sharples identifies creativity in writing with the application of processes that manipulate
some of these constraints, thereby exploring and transforming the conceptual space that they
define. Some of these concepts will revisited in the discussion in Section 4.

2.3. Articulating the Representation of Poetry in Existing Systems

Poetry generation systems explore a conceptual space characterized by form and con-
tent. The rules of the language being employed interconnect these two dimensions, in as



8 COMPUTATIONAL INTELLIGENCE

much as any specific content, when phrased in a particular way in a particular language,
thereby acquires a particular form. For the purposes of this article, it is useful to analyze
existing poetry generation systems in terms of two different aspects: how they constrain the
form of the poems they generate and how they constrain the content of these poems. The
manner of constraining in each case can also be characterized by the level of abstraction at
which the constraints are established. The setting of constraints can range from imposing
the reuse of particular fragments of text—phrases, lines, sentences, or templates of ready-
written text with gaps left to be filled during construction—to requiring particular features,
which can themselves be formulated at different levels: phonetic, lexical, syntactical, and
semantic, but also prosodic, metric, emotional, or rhetorical. Because language is a complex
instrument interconnected at many levels, all of these ways of constraining the output can
affect form and content, and some particular ways have more impact on one than the other.
Constraints established at the phonetic, syntactic, metric, and rhetorical levels will have a
more pronounced effect on the form of a poem, but they may also restrict the particular con-
tent that can be conveyed, because they may, for instance, rule out particular lengths of text
or make it difficult to introduce longer words, which will affect content. Constraints at the
emotional, lexical, and semantic levels are more likely to affect what content is conveyed,
but they may bring in words that carry their own phonetic and metric restrictions, which
will affect form. These various features will be used to analyze the systems reviewed in the
succeeding text, because they jointly affect which aspects of the text need to be represented
in each case, and this in its turn affects how these systems might be articulated differently
so as to be deconstructed into services. It is important to note that this criterion induces an
order of presentation of existing systems that does not respect their chronology.

Early approaches to systematizing the construction of poetry occurred in the literary
word independently of the drive for computational creativity. The work of Queneau (1961)
constitutes a combinatorial approach to poem generation where a large number of poems is
obtained simply by interchanging the lines of a set of poems, always respecting the same rel-
ative position of each line within a set template stanza. The lines in each particular position
were all carefully crafted so as to be compatible with all other possible continuations. The
system in this case relies on a basic functionality for providing fragments of text that sat-
isfy given metric constraints, namely, being valid as lines in a sonnet. The system combines
these fragments into poems.

The rimbaudelaires constructed by Oulipo (1981) explores a different procedure, where
words or phrases are cut out of poems by Rimbaud to be replaced by metrically matching
words from poems by Baudelaire. In both of these cases, form and content are constrained by
reusing particular fragments of text, with little or no abstraction. Here, the system relies on
two different functionalities: one for providing textual templates suitable as poem skeletons
and with gaps at particular places and one for providing words of a particular metric and
corresponding to a particular part-of-speech (POS) tag.

Very similar procedures have been implemented computationally in more than one
poetry generation system. Computational solutions of this kind constrain form by relying
heavily on the reuse of fragments from a corpus of poetic texts but usually add some means
for constraining content based on a separate source. Two different approaches can be found:
those that reuse the text directly and those that reuse the structure of the text in terms of its
implicit sequence of POS tags.

The FloWr system (Charnley et al. 2014), intended for implementing creative systems
as scripts over processes and manipulated visually as flowcharts, has been used to build
poetry generation systems by combining word selection strategies with retrieval strate-
gies, key phrase extraction techniques, filtering strategies, rhyme or footprint matching and
strategies for collating the resulting fragments into stanza-like groupings. Word selection



DECONSTRUCTING COMPUTER POETS 9

strategies find words within a selected range of frequency of use, trim the set down to a
particular syntactic category, further restrict to words with a particular sentiment. Retrieval
strategies retrieve tweets containing a word picked randomly from the filtered set. Filtering
strategies disregard tweets with profanities, or not containing personal pronouns. Rhyme
or footprint matching identifies fragments with suitable form. This procedure establishes
constraints on content in terms of the initial filtering of what words to use for seeding the
retrieval, uses as candidate forms the result of filtering the obtained tweets, and defines con-
straints on form by a combination of the conditions used to filter and the target stanza-like
forms used to drive the compilation process. However, ultimately, it is relying on reuse of
complete tweets, or sentences extracted from tweets, with results emerging on the basis of
the various procedures employed for selection and filtering the input material. The FloWr
system relies on a two-tier approach to poem building: one process for building candidate
lines and one for collating selected candidates into stanzas. In this case, there is a func-
tionality for retrieving suitable fragments of text—here based on several possible retrieval
strategies—and a functionality for combining these into poems.

The corpus-based approach of Toivanen et al. (2012) also reuses text, but it introduces
small changes in terms of word substitution. It relies on two different corpora, one to estab-
lish constraints on form and one to establish constraints on content. To set constraints on
content, a word association network is built from a corpus consisting of the Finnish pages of
Wikipedia. To set constraints on form, fragments are selected from a corpus of old Finnish
poetry. A word substitution method is applied: start from a given fragment from the poetic
corpus, replace selected words with syntactically compatible words obtained from the word
association network. Because word substitution is applied to the set of fragments obtained
from the corpus, the operation here is equivalent to a process of template extraction followed
by a process of selecting appropriate words to fill the gaps. This approach is refined further
by Toivanen et al. (2014) where additional constraints are imposed on the words being used
to replace: Candidate fillers must come from foreground associations obtained for a given
input news item—words in the current news item not already associated with a prior news
item on the same topic. When associations are employed to select the desired words, an
additional level of semantic-related criteria is being used as filter for retrieval of words.

A similar solution is applied in the Pemuisi system (Rashel and Manurung 2014) where
templates for lines are obtained by abstracting content words from a corpus of Indone-
sian poems, then filled with keywords extracted from newspapers (an intermediate semantic
expansion process is applied to improve variation). Selection of slot fillers is treated in this
case as constraint satisfaction problem; constraint satisfaction (at the poem level) is also
used to select a set of lines to combine into a poem. A schema similar to those followed
in the previous text is being followed: template construction followed by template comple-
tion from a set of candidate words. Pemuisi also follows articulation in two tiers: The task
of building a poem is divided into a procedure for constructing lines and a procedure for
combining valid lines into poems.

This two-tier approach to poem construction had already been employed in the
PoeTryMe system (Gonçalo Oliveira 2012), which considered constraints on content spec-
ified at a semantic level. In PoeTryMe, constraints on form are set by employing line
templates that are actual lines from a corpus of poems, with gaps—tagged with gender and
number agreement information—for two or more words related to one another by a partic-
ular semantic relation. Constraints on content are established by picking candidate fillers
from a semantic relation graph—nodes are words, edges are semantic relations between
them—so that the selected words are in a relative vicinity of a given set of seed words. The
actual poem is constructed by combining a set of filled-in line templates with a poem tem-
plate that can establish constraints on number of lines per stanza, number of syllables per



10 COMPUTATIONAL INTELLIGENCE

line, and/or rhyme schemes for the stanza. The poem template is filled in according to one
of a set of strategies. These strategies are based on searching for candidates that optimize
a scoring function that considers satisfaction of the constraints of the poem template. The
set of strategies includes generate and test and evolutionary methods. Template construction
followed by constraint-driven selection of words to fill the templates is again in evidence.
This time, semantic criteria are used to filter the candidates words.

The approach of Colton et al. (2012) is also based on template extraction, but it presents
a much richer process of construction, involving up to three tiers of recombination, and it
includes a very elaborate inventive process for building the initial seeds for content. It also
introduces emotional constraints in the form of a mood set at the start of the process—
from the analysis of newspaper articles for a particular day—that influences later decisions.
The system constrains the content by starting from a collection of similes—obtained by a
complex process of expanding an existing database of similes and then selecting from the
result those that satisfy basic correction understandability criteria—taken together with a set
of keywords extracted from newspaper articles. The form of the poems is constrained during
a three-stage process: The selected words are used to build phrases, a first tier of templates
is used to combine phrases into larger fragments of text, and a second tier of templates
to build stanzas and/or poems from fragments of text. The process of creation of phrases
is itself described in terms of three stages: two initial ones of retrieval and multiplication
(that together constitute the process of building the collection of similes used as seed) and
combination (which involves combining the resulting similes with keyphrases to fill the
gaps in the first tier of templates). The process of combining the phrases resulting from this
combination process with the second tier of templates is called instantiation. Although the
processes of constructing the templates and recombining the intermediate results into larger
poems are more complex than in previous instances, overall, their basic nature is still one of
template construction/filling plus recombination of fragments based on poetic criteria. An
important innovation is the possibility to consider emotion-based constraints.

A different approach involves stripping all the words from the reference fragment for
form, and retaining only its sequence of POS tags, then filling those in with words from a
different source, with criteria for appropriateness to drive the process.

An example of this approach is the early version of the WASP system (Gervás 2000),
which draws on prior poems—to provide plausible sequence of POS tags for lines—and
a selection of vocabulary provided by the user to generate a metrically driven recombi-
nation of the given vocabulary according to the line patterns. The plausible sequence of
POS tags for lines, together with the selection heuristics based on metrics constrain form,
and the vocabulary provided by the user constrains content at a lexical level. This sys-
tem introduces the concept of a specific module for evaluating poetic form, which can be
considered a poetic expert, capable of returning the metric analysis of a given text frag-
ment, numerical values for certain poetic features of the text, and/or a score for its metric
quality. This is also the approach followed by Agirrezabal et al. (2013), which relies on
extracting POS tag sequences for lines in a given corpus of poems—using different cor-
pora for different lengths of line in the stanza—finding the most commonly used such POS
tag patterns for lines, and filling those chosen patterns with new ones, based on criteria
at two levels: one syntactic—matching POS tag and morphology—and one semantic. Sev-
eral semantic criteria are considered, but the best performance is obtained with replacing
only nouns with other semantically related nouns, ensuring that morphological informa-
tion from the original word is transferred to the substitute. These approaches can be seen
as an extreme version of template construction, where all the words in the seed frag-
ments are stripped down to just their POS tag, to be refilled with new words satisfying
the constraints.



DECONSTRUCTING COMPUTER POETS 11

A similar procedure but with more refined constraints on form is used by Toivanen et
al. (2013). Instead of taking an actual fragment and replacing some of the words in it with
new ones corresponding to the desired content, the selected fragment is stripped down to
a skeleton consisting only of the POS tags of each line, and words corresponding to the
desired content are used to fill this skeleton in, while obeying a complex set of constraints.
Constraints can be established based on rhyme, number of syllables per line, occurrence of
particular words, or even syntax, and they can be loosened so that rather than being binary,
they allow for grading of the solutions in terms of how well they satisfy the constraints. The
solution is then sought by applying answer set programming to search for optimal assign-
ments of candidate words that optimize this grading. The set of constraints being considered
here has been refined substantially, but the overall procedure still corresponds to an abstract
process of extracting a template and filling it with words based on a set of constraints.

An evolution of the WASP system (Gervás 2001) used case-based reasoning (Aamodt
and Plaza 1994) to build verses for an input sentence by relying on a case base of matched
pairs of prose and verse versions of the same sentence. Each case was a set of verses
associated with a prose paraphrase of their content. An input sentence was used to query
the case base, and the structure of the verses of the best-matching result was adapted
into a verse rendition of the input. The syntactic structure of the solution—the sequence
of POS tags for the verse version, including the corresponding line breaks—was used
as template to be filled with words from the user query, guided by metric restrictions
and falling back on the actual words of the poem in case of mismatch. Because solu-
tions not necessarily matched full stanzas or even complete lines, an additional tier of
construction was included to combine the verse renditions of each input sentence into
complete poems. Although there is a more elaborate procedure here for selecting the
most appropriate template to realize a given input text, the procedure employed to actu-
ally generate the poem follows the lines outlined earlier: template extraction followed by
template filling.

An approach that relies on word-based specification of content combined with emo-
tional aspects but introduces a different way of constraining form and a different approach
to the combination of modules dealing with different aspects of poem generation into a
single system is presented by Misztal and Indurkhya (2014). This is a poetry generation
system that relies on a multiagent blackboard approach to create poems that employ a wide
range of literary tropes and aim to convey a particular emotion. The system relies on a
set of expert modules that each focus on a particular aspect, and which interact by sharing
results on a blackboard. Types of experts include word-generating experts that contribute
word matching a given topic or emotion, poem-making experts that arrange words from
the common pool into phrases or sentences guided by context-free grammars, and evalu-
ating experts. This system includes a functionality for word selection already encountered,
but it combines it with a new functionality that allows combination of words driven by
a grammar, rather than the simple template filling seen so far. A theme and an emotion
for the poem are extracted from an input text provided by the user. A control component
determines which experts obtain access to the blackboard and in which order. Specific
experts contribute particular tropes such as epithets, comparisons, metaphors, oxymoron,
rhetorical questions, exclamation, or repetition. Other experts provide pertinent vocabulary,
grammatical expertise, selection criteria based on number of syllables, or inspiration—
by processing the input text. This approach constrains content in terms of a particular
topic and an emotion extracted from the input text and constrains form through the imple-
mentation of the various experts. This type of solution allows a fine-grained control on
many aspects of the form, including explicitly many literary tropes. It is important to
note that in this particular approach, specific literary forms are introduced explicitly by



12 COMPUTATIONAL INTELLIGENCE

the set of system modules, rather than arising from the reuse of an existing corpus of
poetic texts.

Another system heavily influenced by semantic information used to drive the poetry
generation process is described by Veale (2013a). This system exploits poems as summa-
rization and visualization devices for the set of properties and feelings that are evoked when
a certain subject T is viewed as M. That is, it explores the conceptual space of poems built
around the metaphoric view of T as an M. It achieves this by relying on a rich seman-
tic knowledge base mined from three resources: a large roster of stereotypes, a large body
of normative relationships between these stereotypes, and the Google ngrams. The ini-
tial set of stereotypes is progressively elaborated—enriched with information on relations
between stereotypes, and combined into complex conceptual blends—to provide semantic
input pregnant with insight and wit. This material comes out as a set of pairings between
elements from the domain of T and elements from the domain of M. It is exploited in
poetic form by the use of a semantic grammar for the poem, which comes with gaps in
particular lines for the two elements of a pair, and indications of the trope that should be
used in different parts of the poem, how each line is to be rendered—as an assertion, an
imperative, a request, or a question—and whether it should be framed positively or neg-
atively. In this case, the content is constrained by the input terms—T and M—and the
corresponding set of pairs as returned by the knowledge base, and the form is constrained
by the semantic grammar, which is a template enriched with additional information used to
guide the instantiation process. This system presents a more elaborate process for select-
ing words in related pairs, together with a grammar that can be used to combine them into
text fragments.

Some of the systems described so far include constraints on the content at the semantic
level. However, these semantic constraints take the form of either semantic relatedness of
the content to a given word or having a certain semantic relation hold between certain parts
of the content. Considering an actual message to be conveyed by the poem, specified in
terms of a semantic representation, constitutes a significantly more difficult challenge. This
challenge was addressed in initial work by Manurung (1999), who applied a generate and
test approach based on chart generation but added an important restriction: that poems to
be generated must aim for some specific semantic content, however vaguely defined at the
start of the composition process. The approach relied on chart generation, taking as input a
specification of the target semantics in first-order predicate logic, and a specification of the
desired poetic form in terms of meter. Words are chosen from a lexicon that subsumes the
input semantics, and a chart is produced incrementally to represent the set of possible results.
At each stage, the partial solutions are checked semantically to ensure that no sentences
incompatible with the original input are produced. Additionally, partial results are checked
for compatibility with the desired poetic form. In this system, the process of grammar-
based generation is driven by a semantic input, and the validation of the results relies on a
poetic expert.

Manurung (2003) went on to develop in his PhD thesis an evolutionary solution for
poetry generation—now described by Manurung et al. (2012)—that also aimed for a spe-
cific semantic target. Manurung’s MCGONAGALL used a linguistic representation based
on lexicalized tree-adjoining grammar over which operated several genetic operators—
from baseline operators based on lexicalized tree-adjoining grammar syntactic operations
to heuristic semantic goal-directed operators—and two evaluation functions—one that mea-
sured how close the solutions stress pattern was a target meter and one that measured how
close the solutions propositional semantics was to the target semantics. Both of these sys-
tems by Manurung included constraints on content in terms of particular meaning to be
conveyed, represented semantically, and constraints on form formulated at the metric level



DECONSTRUCTING COMPUTER POETS 13

and at the syntactic level—both systems required that outputs be syntactically correct with
respect to a given grammar.

Yet another approach to reusing text to constrain the output of poetry generators is
the use of ngrams to model the probability of certain words following on from others.
This corresponds to reusing fragments of the corpus of size n, and combining them into
larger fragments based on the probability of the resulting sequence. This approach intro-
duces a new approach to the generation of text, beyond template filling and grammar-based
construction: the generation of text from an ngram-based language model.

The Poetic Machine (Das and Gambäck 2014) for generating Bengali poetry employs
a line-based construction procedure, driven by a given rhyme pattern to be matched, with
ngram-based constraints used for selecting the final candidate for a line.

Combining ngram modeling and evolutionary approaches, a redesigned version of
the WASP poetry generator (Gervás 2013a, 2013b) has been built using an evolutionary
approach to model a poet’s ability to iterate over a draft applying successive modifications
in search of a best fit, and the ability to measure metric forms. It operates as a set of fam-
ilies of automatic experts: one family of content generators or babblers, which generate a
flow of text that is taken as a starting point by the poets; one family of poets, which try to
convert flows of text into poems in given strophic forms; one family of judges, which evalu-
ate different aspects that are considered important; and one family of revisers, which apply
modifications to the drafts they receive, each one oriented to correct a type of problem, or
to modify the draft in a specific way. These families work in a coordinated manner like a
cooperative society of readers/critics/editors/writers. All together, they generate a popula-
tion of drafts over which they all operate, modifying it and pruning it in an evolutionary
manner over a number of generations of drafts, until a final version, the best valued effort of
the lot, is chosen. In this version, the overall style of the resulting poems is strongly deter-
mined by the accumulated sources used to train the content generators, which are mostly
ngram-based. This system combines an ngram-based text generation module with a poetic
expert that acts as fitness function in an evolutionary context. It also includes a new type
of module: a text rewriting functionality that receives text as input and generates a different
text obtained by rewriting the original in some way. Several versions of this system have
been developed, covering poetry generation from different inspirational sources as differ-
ent sets of training corpora are used: from a collection of classic Spanish poems (Gervás
2013a) and a collection of newspaper articles mined from the online edition of a Spanish
daily newspaper (Gervás 2013b). Readers interested in a full description are referred to the
relevant papers. However, two specific aspects of this implementation are relevant for this
article. First, the various judges assign scores on specific parameters—on poem length, on
verse length, on rhyme, on stress patterns of each line, on similarity to the sources, fitness
against particular strophic forms, and so on—and an overall score for each draft is obtained
by combining all individual scores received by the draft. A specific judge is in charge of
penalizing instances of excessive similarity with the sources, which then get pushed down
in the ranking and tend not to emerge as final solutions. Second, poets operate mainly by
deciding on the introduction of line breaks over the text they receive as input. These are
aspects that will play a role in the proposed deconstruction to be implemented as services.

A more refined attempt at generating poetry based on ngrams and including more
abstract constraints into a tractable and complete search procedure is the work of Barbi-
eri et al. (2012). Relying on constrained Markov processes to generate texts in the lyrics in
the style of an existing author, it integrates the constraints on grammaticality, rhyme, meter,
and, to a certain extent, semantics into the search procedure itself. The system start from a
given word and considers as semantically acceptable outputs those that include the n words
in the corpus most closely related to the chosen word. This approach basically enriches an



14 COMPUTATIONAL INTELLIGENCE

ngram-based solution for text generation, imbricating the constraints that drive the process
into the construction procedure itself.

The material covered so far indicates that there are many different approaches to the task
of poetry generation, and that each approach considers different representations of poetry
and that the resources required to produce it come specified at different levels of abstrac-
tion. This affects the way in which solutions for poetry generation can be deconstructed
into services.

2.4. Articulating the Modularity of Creative Computational Systems

In addition to the possible articulation of the poetry generation task in terms of its
constituent element, one needs to consider the way in which these systems—and oth-
ers designed for similar or related tasks—are themselves articulated into modules that
cooperate.

Veale (2013b) proposes an architecture for creative Web services intended to act as
a force magnifier for computational creativity, both for academic research and for the
effective deployment of real computational creativity applications in industry. The archi-
tecture combines three types of services: discovery and insight services, aimed at mining
diverse corpora to acquire emergent insights and novel perspectives on everyday concepts;
idea composition services, designed to suggest, elaborate, and comprehend conceptual
metaphors, analogies, and blends, as well as services for accessing the large store of com-
monsense knowledge that these composition services will crucially rely upon; and framing
services, which can package the conceptual conceit that underpins a creative act for an audi-
ence in a concise, easily appreciable, and memorable form, such as a linguistic metaphor,
simile, joke, name, slogan, short story, poem, picture, piece of music, or a mixture of these
forms. The proposal includes description of two specific Web services—Thesaurus Rex and
Metaphor Magnet—for providing creative functionality.

The architecture of the PoeTryMe system (Gonçalo Oliveira 2012) is presented with
the hope that it might serve a generic as a platform for the automatic generation of
poetry. This architecture includes the following modules: a relations manager that operates
over a semantic graph, a grammar processor, which relies on a grammar, a contextual-
izer that uses a context grammar, a sentence generator, and a module that establishes
the generation strategy, which draws upon poem templates and seed words provided
as input. The flexibility of the platform lies in the possibility of replacing the various
resources and modules with alternative solutions. This has in fact been tried out successfully
in porting the PoeTryMe system—originally developed for the Portuguese language—
to generate Spanish poetry (Oliveira et al. 2014). This effort involved the replacement
of the resources for Portuguese with equivalent versions for Spanish, and slight adap-
tation of some of the modules. The resulting system does indeed generate poetry in
another language, but the procedure employed to do so is very much the same as in the
original system.

Along similar lines, the blackboard architecture proposed by Misztal and Indurkhya
(2014) also promises a flexible approach, incorporating as it does explicit representation of
multiple aspects of poetry generation—as so many expert modules—and also an explicit
arbitration procedure between them in terms of its control component.

The FloWr system (Charnley et al. 2014) described in the previous text is an instance
of a system designed to encourage third-party developers of creative functionality to con-
tribute material, which becomes available within the general framework for recombination
with existing modules and resources. This approach partakes in the spirit of a service-
oriented approach to development but expects contributors of services to develop them



DECONSTRUCTING COMPUTER POETS 15

within a particular framework and adopting a particular implementation based on scripting
and flowcharting.

ClowdFlows (Kranjc et al. 2012) is an open cloud-based platform for composition,
execution, and sharing of interactive data-mining workflows, based on the principles of
service-oriented knowledge discovery. It enables users to seamlessly integrate and join dif-
ferent implementations of algorithms, tools, and Web services into a coherent workflow that
can be executed in a cloud-base application. This framework combines the visual graphical
manipulation of processes as workflows with the modularity and composability of services,
including means for integrating those deployed as Web services.

Pattern (Smedt et al. 2014) is a Python toolkit for Web mining, natural language process-
ing, machine learning, network analysis, and data visualization that includes a module that
can be used to set up Web services. The authors defend that users can work on different tasks
and share their results without having to reinvent algorithms from published pseudo-code,
without having to deal with installation instructions or adopt new programming languages.

OntoHub (Kutz et al. 2014) is a repository of ontologies based on the distributed ontol-
ogy language that provides the capability for specifying domain diagrams in such a way that
they can be automatically combined using conceptual blending. This is a creative service
operating over the Web, but the current version still relies on distributed ontology language
files as input.

The Slant system (Montfort et al. 2013) is a storytelling system that combines a number
of existing systems with focus on different aspects of the storytelling process and integrates
them using a blackboard architecture. The authors explain that the crucial issue they had to
face to design the integration was to establish a shared representation for the material being
considered. In particular, because not only entire complete stories need to be represented,
but also partial stories, the composition of which is still in progress. Another important
insight contributed by the Slant system is the need to establish a termination condition for
the construction procedure: some criterion for deciding when the accumulated result can be
considered complete. The architecture of the Slant system combines an initial stage where
several systems operate jointly on a shared representation placed on a blackboard, and a
second stage where the result of the first stage is passed on to a generative pipeline that
processes the accumulated information to produce the final result.

3. DEVELOPING POETRY-RELATED PROCESSES AS SERVICE

In view of the work reviewed above, deconstruction of a computer poet would involve
the following stages. Section 3.1 presents an attempt to digest this information into a ten-
tative proposal of a high-level description of a set of services that might be valuable for
researchers interested in poetry generation. Section 3.2 presents the rationale for two partic-
ular examples that can be developed by reusing functionality of an existing creative system,
the WASP poetry generator. These examples are described in Sections 3.3 and 3.4.1

3.1. A Proposal for Poetry-Related Services

The review of existing systems presented in Section 2.3 allows us to compile a basic
specification of some of these services in terms of the type of input they can receive and the
type of output they can provide. It is beyond the scope of this article to propose particular

1 Correction added on 28 September 2016, after first online publication: an additional header entitled “DEVELOPING
POETRY RELATED PROCESSES AS SERVICES” and a brief introduction were inserted as Section 3 to better explain the
structure of sections in the paper; succeeding sections and subsections have been renumbered.



16 COMPUTATIONAL INTELLIGENCE

implementations for all of these types of services. For each one of these functionalities, a
standardized contract would need to be defined before it can be implemented as a service.

3.1.1. Poetic Fragment Provision. A number of the systems reviewed in Section 2.3
rely on modules that can provide snippets of text satisfying constraints of various types.
These constraints can be phrased in terms of semantic relatedness to other words (Gonçalo
Oliveira 2012; Colton et al. 2012; Veale 2013a; Toivanen et al. 2014), POS tags (Gervás
2000, 2001; Toivanen et al. 2014), emotion (Colton et al. 2012; Charnley et al. 2014; Misztal
and Indurkhya 2014), metrics (Gervás 2000, 2001; Agirrezabal et al. 2013; Toivanen et
al. 2012; Rashel andManurung 2014), rhyme (Gervás 2000, 2001), or emotion (Colton et
al. 2012; Charnley et al. 2014; Misztal and Indurkhya 2014). The functionality of these
modules might be usefully made available as a service. Such services would take as input
a specification of the type of constraint desired, and they would return a set of snippets
satisfying the constraints in the given specification. Such systems may return text fragments
consisting of a single word, providing reusable solutions for all the systems that search
for appropriate words to fill particular gaps in templates. They may also provide line-sized
fragments, in which case they would be useful in systems that build poems by recombination
of valid lines.

3.1.2. Template Provision. Many of the systems described rely on the use of templates
for the construction of poetic fragments of text. Some of them include a stage that processes
a corpus of texts and automatically extracts templates of different kinds to drive the gen-
eration process (Colton et al. 2012; Gonçalo Oliveira 2012; Toivanen et al. 2013; Rashel
and Manurung 2014). The criteria for extraction can be based on line breaks, based on POS
tags, based on semantic relations between words, or based on syntactic structure. These
templates are obtained by taking an input fragment of text and abstracting away some of its
components (usually single words, but possibly also longer phrases, or all of the words). The
components that are abstracted are replaced by a placeholder specification that describes
the constraints that the abstracted element satisfied. Any candidate to fill the resulting gap
should satisfy the same constraints.

In some cases, the poetry generation systems described include functionality to auto-
matically generate these templates from a given corpus of text. Such functionality might
be very useful to developers of other systems if made available as a service. The service
would receive as argument a specification of the unit to be employed as basis for the tem-
plate. This can range over a large set of elements, including sentences, lines, paragraphs,
or poems. Different instances of this type of service are possible, depending on how the
selection of what to abstract is made. In such cases, an additional input argument should be
provided to describe the type of abstraction that is desired. Possible types of abstraction to
consider include abstract all words in the chosen fragment down to their POS tags; abstract
only content words; abstract only words a particular category, such as nouns, for instance;
and abstract only pairs of words connected by a semantic relationship.

A related type of service can simply provide hand-crafted templates on demand. This
type of service would only need the arguments specifying the basic element on which the
template should be constructed and the type of abstraction desired.

3.1.3. Grammar-Based Generation. A number of systems rely on grammars of some
kind for at least part of their generative process resulting in text fragments or phrase. The
types of grammar considered vary widely and include template-like semantic grammars
(Gonçalo Oliveira 2012), context-free grammars (Misztal and Indurkhya 2014), or tree-
adjoining grammars (Manurung 1999, 2003). In each case, the grammar generation module



DECONSTRUCTING COMPUTER POETS 17

receives as an input a basic specification of the basic material to be considered and outputs
a grammatically valid text that includes as much as possible of that material in related sen-
tences. The specification of the material to use can come either as a set of words to include
(Misztal and Indurkhya 2014), as a set of words interconnected by a given semantic rela-
tion (Gonçalo Oliveira 2012), or as full semantic description in terms of first-order logic
(Manurung 1999, 2003).

3.1.4. Ngram-Based Knowledge. A different type of system relies on ngram-based
language modeling at different levels, for analysis of candidate solutions, training, genera-
tion, and probability rating (Barbieri et al. 2012; Gervás 2013a; Das and Gambäck 2014).
This would correspond to a set of potential services of different types, and each one would
be defined in terms of its contract and implemented accordingly. Possible instances of these
services might be service for returning an ngram-based language model for a given corpus,
service for returning the probability of a given sequence of words with respect to a given
language model, or services for providing a random sequence of text valid with respect to a
given ngram model.

3.1.5. Queriable Knowledge Bases. A large number of the systems reviewed rely
on knowledge bases that provide them with answers to particular queries. These queries
may concern semantic relations between words (Gonçalo Oliveira 2012; Toivanen et al.
2014), rhetorical pairings (Colton et al. 2012; Veale 2013b), semantics to syntax mappings
(Manurung 1999, 2003), or emotional connotation of particular words (Colton et al. 2012;
Charnley et al. 2014; Misztal and Indurkhya 2014). These type of knowledge bases would
be very useful if available as services. Solutions already exist out there that can be seen as
partial answers to this need. Existing Web services for creativity, such as Thesaurus Rex or
Metaphor Magnet (Veale 2013b), would actually fit into this description.

3.1.6. Poetic Expertise. Although many of the reviewed systems rely directly on their
construction procedures to guarantee the poetic quality of their results, there are some that
include a module capable of producing judgments on poetic quality for a given text input.
This type of module has been described in the review in Section 2.3 as a poetic expert. The
functionalities that involve receiving a text fragment and outputting some type of judgment
on its poetic quality would be very welcome additions to a set of services for the develop-
ment of poetry generation systems. Such functionalities might include providing syllable
counts, identifying rhymes, checking for satisfaction of rhyming patterns characteristics
of certain stanzas, scansion of lines into feet, or combinations of these features into more
abstract judgments on poetic quality.

Examples of this type of service are described in Section 3.3.

3.1.7. Rewriting Capabilities. Many of the functionalities for which poetry-related
services have been proposed had been identified as recurring throughout the set of exist-
ing poetry generation systems reviewed. The ability to rewrite a given fragment of text in
a different form that might better match certain poetic criteria occurs less frequently. It is
described as a module in (Toivanen et al. 2012) and in the WASP system. Toivanen et al.
(2012) describe a word substitution method that involves rewriting fragments of the corpus
by replacing some words with others. In the WASP system, there are at least two differ-
ent modules for rewriting a given draft: one that simply inserts line breaks at appropriate
places and one that modifies a given draft by either replacing or eliminating certain spans
of the text, from single words to complete sentences. Additionally, the mutation and cross-
over operations involved in the evolutionary solution in (Manurung et al. 2012) can also be



18 COMPUTATIONAL INTELLIGENCE

considered rewriting operations. There are two reasons to include this type of functionality
in our set of services. First, because it is an operation that all beginners at poetry writing
employ frequently. Second, because, although most of the other systems reviewed do include
specific modules covering this functionality, the overall operation of many of them could
be considered an instance of this rewriting ability: Filling the gaps in a template with new
words is equivalent to applying a rewriting operation of this type to the original text from
which the template was extracted.

Examples of this type of service are described in Section 3.4.

3.1.8. Conclusions on the Proposed Services. This set of services is difficult to clas-
sify in terms of the three variants described by Veale (2013b). Whereas some are clearly
discovery and insight services, others would fall in the category of framing services. Yet,
Veale’s description of this category seems to be very coarse-grained, in the sense that poetry
generation is mentioned singly as a member, and many of the types in the preceding text
operate at a much lower level of granularity.

Ongoing attempts at providing infrastructure for combining modules from different
sources, such as the FloWr system (Charnley et al. 2014) or the ClowdFlows system (Kranjc
et al. 2012), would provide very useful functionality for combining existing services. Indeed,
ClowdFlows already includes functionality to this effect, combined with the visual display
in terms of workflows.

It is beyond the scope of this article to propose a single service-oriented architecture
for the task of poetry generation. The field and the understanding of the problem are not yet
ripe to undertake this endeavor. Nevertheless, a number of patterns can be seen to emerge
from the review of existing systems.

The most elementary poetry generation systems rely on a combination of poetic frag-
ment provision and as subsequent set of recombination. More elaborate solutions rely on a
template-provision stage, followed by a poetic fragment provision stage to fill the gaps in
the templates, and a final stage of recombination into poems that can be multilayered. Some
of these solutions are driven by a poetic expert module that provides feedback on the metric
quality of the results. The more refined solutions rely on either grammar-based or ngram-
based generative solution in place of fragment provision and/or template-based generation,
with similar layers of poetic expertise and recombination placed on top.

3.2. Designing Examples of Useful Poetry-Related Services

To test the initial hypothesis of this article, we will attempt to reconstruct part of the
functionality of an existing poetry generator in terms of modules that could be made avail-
able as services. To this end, each of the modules must undertake a task that can be described
in an understandable way, that can operate autonomously of the other modules, and that has
been validated as a useful contribution to the overall task of poetry generation. The case
study that we have chosen is the WASP poetry generator, in its most recent version. The pur-
pose of this effort is to show that there are a number of subtasks in any approach to poetry
generation that are related to the elementary properties of poetic text, which take basic rep-
resentation as input—namely, clear text, possibly with the line breaks being relevant to the
form—and return either text of the same kind as output or a numerical score represented
as an integer or double. These are also tasks that are independent of the particular evolu-
tionary procedure originally being applied in the parent system, and that do not rely on any
particular internal representation, in the sense that, where they do, the details can remain
hidden inside the implementation of the service and need not be taken into account by
a client.



DECONSTRUCTING COMPUTER POETS 19

The major task modeled by the WASP system is that of identifying the most appropriate
poetic form for a given text. This is achieved mainly by distributing coherent fragments of
the input text over a set of verses, each one observing metric restrictions on a number of
syllables, stress placement, and possibly rhyme of the final word. The selected fragments
may also be modified in different ways, possibly departing from the original style or even
its meaning, if a greater poetical effect is achieved as a result.

Two basic tasks are involved in this process.
First, a system attempting to find appropriate poetic form for a text requires some means

for evaluating the poetical effect of any given draft. If this functionality were encapsulated
in an independent module, it would surely be of use to any developer aiming to produce
poetry. This would correspond to a service on poetic expertise, as described in Section 3.1.
It is therefore our first candidate for an independent service. Within the WASP system, this
particular task is carried out by the judges.

Judges are individual agents that can score a given draft according to specific crite-
ria. They collectively conform the fitness function employed in the evolutionary process.
Although judges might be implemented as individual services, so that different develop-
ers can compose different evaluation functions by selecting different sets of judges, in this
article, we have considered only a single service that provides a homogeneous evaluation
criterion representing the combined expertise of the available WASP judges.

The details of this combination, and the experiments carried out to calibrate it, are
described in Section 3.3.

Second, a system attempting to find appropriate poetic form for a text requires some
means for providing an initial distribution of the given text into verses. It is possible that
inserting line breaks in appropriate places enhances the poetic effect of a given text. The
ability to identify what these places may be would constitute a useful addition to a poet’s
toolkit. This subtask is undertaken in the WASP system by the poets. Poets receive a plain
text, with no line breaks, and produce an initial poem draft, where the text has been broken
down into a number of verses. This would correspond to a service of rewriting capabilities,
as described in Section 3.1. Although this may seem trivial, it is an important step of the pro-
cess because it establishes relevant parameters such as the verse length, the rhyme scheme,
or the number of verses, which determine which type of stanza is being targeted. For any
such given combination, the evaluation procedure described in the preceding text must be
able to establish a valuation, possibly in the form of a numerical score, or some other means
that allows the ranking of different candidates.

The functionality of a versifier as described may also be implemented as a service, to
be invoked by systems hoping to generate poetry. Attempts at doing this are described in
Section 3.4.

3.3. A Poetry Evaluation Service

An important task in the generation of poetry is the recognition of poetic form and the
ability to rate a particular effort in terms of its poetic quality. Poetic quality in general terms
is a very elusive concept, involving both form and content at all levels, whether linguistic,
semantic, evocative, or emotional. The subset of this overall evaluation of quality that is
concerned with form is easier to model computationally than other aspects. A number of
characteristics universally recognized as relevant to poetic effect are easily identifiable from
the surface form of the poems. These include number of syllables in a verse, number of
verses in a poem, and rhyme. More elaborate aspects such as alliteration, or the use of
rhetorical tropes, could be considered but are left out of the current effort for simplicity.

Even over this restricted set of characteristics, the task is sufficiently complex. Treatises
exist that describe the accepted requirements of poetic form for given languages. In the case



20 COMPUTATIONAL INTELLIGENCE

of Spanish, which is the language for which our service will be designed, a classic reference
is Quilis (1985). Nevertheless, such treatises describe these requirements in historical terms
as described by grammarians, not necessarily convenient for computational implementation.
Furthermore, they usually focus on describing accepted fixed forms for classic poetry and
leave open the description of free poetic forms that are known to be of high esthetic value
and actually form a high percentage of poetic literature in some languages. The challenge
is to devise a set of heuristics that capture both the requirements of classic poetic form and
the characteristics of rhythm and rhyme that can constitute a significant part of the appeal
of poems in free form. To be useful in computational settings, these heuristics need to be
expressed in a numerical form. This would correspond to the definition of an esthetic mea-
sure as described by Colton et al. (2011). This challenge has been addressed by collecting
a number of identifiable features that together capture the characteristics in question. These
features are based on the elementary phenomena that compose metrical form—breakdown
into syllables, stressed syllables, and rhyme—but rely on generic structural properties—
such as two rhymes or two verses of similar length appearing consecutively in a poem draft,
or appearing separated by a number of intervening verses—rather than on collections of
named rhyme patterns—which treatises on the subject tend to prefer. A number of different
metrics has been developed, each capturing a specific requirement on a particular feature.
This results in a number of metrics concerning rhyme, a number of metrics concerning verse
length in syllables, and so on.

These metrics could be made available as separate services, for client users to combine
as they see fit. Foreseeing the need to combine more than one of these metrics together
into a single overall score, each one of them has been normalized to a top score of 100. In
each case, the normalization procedure has been devised to ensure that the resulting score
remains significant when compared across poetic drafts of different characteristics.

Clients would also have the option to devise their own way of combining these metrics
together. Many possibilities exist, from a simple average to weighted linear combination, or
more complex mathematical combinations. For the results presented in this article, simple
average has been used.

The following set of metrics have been considered:

� Stress Placement scores each verse in terms of whether the stressed syllables occur in an
appropriate position for the length of that verse.

� Line Break Placement assigns low scores to poems where line breaks occur right after a
word whose stress does not compute.

� Consonant Rhyme counts the number of consonant rhyming pairs—rhymes that appear
more than once—and scores the poem with the ratio between the count of rhyming pairs
and the length of the poem.

� Asonant Rhyme is a similar metric for asonant rhyming pairs.
� Rhyme Patterns computes the number of instances of N consecutive verses rhyming

together—for N D 2, 3, and 4—and the number of instances of two verses rhyming
together across a span of N verses with different rhyme—for N D 1, 2, and 3. These
scores are computed for both consonant and asonant rhymes, but the judge selects the
best of the two resulting scores to be assigned to the draft. This is based on the intu-
ition that a poem should be built either aiming for consonant or asonant rhyme; thus, one
should avoid the possibility that the score for one should drag the other down. This way,
the highest scoring type of rhyme overrides the other one.

� Verse Length Repetition checks how many types of verse lengths appear in the poem
and scores it, taking into account the ratio of the number of verses that share the most
frequent length over the number of verses in the poem.



DECONSTRUCTING COMPUTER POETS 21

TABLE 1. Comparative Scores by the Set of Metrics for Valued Poems
(VP) and News Articles (NA).

SP LB CR AR RP VI VR TS

VP 98 100 62 75 59 96 77 81
NA 100 0 0 0 0 0 0 14

Scores for metrics cover stress placement (SP), line break placement (LB),
consonant rhyme (CR), asonant rhyme (AR), rhyme patterns (RP), verse
length irregularity (VI), verse length repetition (VR), and total score (TS).

� Verse Length Irregularity scores by penalizing each verse that is of unique length within
the poem. This scores highly for most known stanzas and decreases as irregularities
creep in. This scores better the stanzas that combine two different verse lengths—which
are heavily penalized by the VerseLengthRepetitionJudge—as long as each verse length
occurs more than once.

The set of metrics has been calibrated by comparing the scores that it assigns to two
different sets of texts: a selection of classical poems (understood to be instances of highly
valued samples) and a set of news articles for a given day taken from a Spanish online
daily newspaper2 (understood to be not necessarily poetic in any way). The selection of
classical poems employed to calibrate included seven poems of different lengths, differ-
ent poetic forms, and from different historical and stylistical periods. The set was designed
to include all major lengths of line used in classical Spanish poetry and free-form verse,
both poems in fixed stanzas and in free form, and both short poems of fixed number of
lines and long poems of arbitrary length—although usually constrained to an even num-
ber of lines. This set was deemed to cover a diverse enough set of different types of
poetry to constitute a reliable indication of the generic applicability of the metrics beyond
particular types of metric. An equivalent number of texts of similar sizes was obtained
from the website of the newspaper, which consisted of texts with no poetic intent and no
line breaks.

The hypothesis is that the metrics will fulfill their intended function if they allow
discrimination between the two sets of texts.

The average scores for each of the metrics, plus the total combined score, are listed for
both sets of texts in Table 1. These experimental results are provided solely for the purpose
of illustrating the metrics that have been described.

The differences in scores between the two sets of text are considered significant enough
to validate the hypothesis.

3.4. A Versifier Service

Two different approaches are possible: either one expects a specific form for the final
results (in terms of metric restrictions), or one is willing to accept the best possible form
for the given text. In the first case, the content will have to be modified to match the desired
form. In the second case, the form is selected among a number of possibilities by the con-
straints on the content. Each one of these approaches will give rise to a different procedure
to solve the task. Different heuristics are possible.

2 Diario El Pais, 2013-05-21



22 COMPUTATIONAL INTELLIGENCE

TABLE 2. Comparative Average Scores for Different Ver-
sifiers: Rhyme Driven (RD), Rhyme Aware (RA), and Rhyme
Aware Slack (RS).

SP LB CR AR RP VI VR TS

RD 87 98 55 74 30 94 23 66
RA 100 100 16 27 20 85 76 60
RS 89 97 26 52 29 90 47 61

SP, stress placement; LB, line break placement; CR, conso-
nant rhyme; AR, asonant rhyme; RP, rhyme patterns; VI, verse
length irregularity; VR, verse length repetition; TS, total score.

3.4.1. Free Form. If the specific poetic form of the result does not have to be con-
strained in any way—for instance, by providing specific preset values for parameters such
as verse length, poem length in verses, choice of rhymes, or pattern of rhyme schemes—the
system is free to explore all possible combinations.

One possible approach is to study the rhymes already available within the input text.
Any rhyming word to be retained as a rhyme of the final draft has to appear at the end of a
verse. A simple way to achieve is to insert the first tentative set of line breaks right after the
words chosen as suitable rhymes.

Several versifiers can be devised by following this principle. The main problem that
they face is that the desired rhymes will normally not appear in the input text with a suitable
spacing between them to give rise to a valuable sequence of verse lengths. This problem can
be addressed either by developing more refined composition strategies, or by establishing a
less than optimal solution as a tentative draft to be later improved during revision.

Three possible strategies for line break insertion based on rhymes are considered:

� Rhyme Driven inserts a line break right behind every word in the text that has a rhyming
word elsewhere in the same text.

� Rhyme Aware considers the distances between candidate rhymes, identifies the most pro-
pitious one—the one that appears most either as single stretches between rhymes or
as combinations of smaller stretches—and attempts to break down the text into verses
enforcing that length and the break points where rhymes have been identified.

� Rhyme Aware Slack is as the previous but allowing verse lengths within a margin of
deviation of the identified optimal verse length.

In all cases, the set of rhymes to be considered is established simply by collecting the
rhymes of any words in the input that have a matching rhyme elsewhere in the same text.

Validation of a versifier involves showing that, for a set of texts with low poetic effect,
the results of applying the versifier show a significant increase in poetic effect. This is tested
by applying every reviser to a fixed set of texts. The set of texts chosen as case study is the
same set of news articles used during the calibration of the metrics presented in Section 3.3
to represent low poetic effect.

The average scores for the population of drafts produced by each of the versifiers, plus
the total combined score, are listed in Table 2. These experimental results are provided solely
for the purpose of illustrating the effect that the application of the poetic revisers may have
on the values of the metrics for given poems.

The resulting scores for this set of versifiers show a considerable improvement—almost
40 percentage points on average—with respect to the original scores for the set of negative
test samples, as shown in Table 1, even if they do not reach the levels of the positive test



DECONSTRUCTING COMPUTER POETS 23

TABLE 3. Example of Poem Pro-
duced by the Rhyme-Aware Versifier.

Esa documentación fue incautada
por la policía, hace más de
dos años, en una nave que utilizaba
la red corrupta para guardar material
diverso. La fiesta posterior, alguno
de cuyos gastos asumió la trama
según su propia contabilidad,
tuvo lugar en una finca dedicada
a la cría de caballos llamada
los Arcos del Real, propiedad de
un amigo de José María Aznar

TABLE 4. Score for the Poem Produced by the
Rhyme-Aware Versifier.

SP LB CR AR RP VI VR TS

80 78 26 65 40 97 53 62

Relevant values of the rhyme-related scores are high-
lighted in bold.
SP, stress placement; LB, line break placement; CR,
consonant rhyme; AR, asonant rhyme; RP, rhyme pat-
terns; VI, verse length irregularity; VR, verse length
repetition; TS, total score.

samples. Although improvements are possible, the concept of composers as services useful
to the poetry composition task can be considered validated in view of these data.

An example of a poem produced by the rhyme-aware versifier is given in Table 3, and
the corresponding scores are given in Table 4. Note that lines 1, 8, and 9 have consonant
rhyme in ada—as reflected by a consonant rhyme score of 26—and lines 1, 3 , 6, 8, 9, and
11 have asonant rhyme in a-a—as reflected by an asonant rhyme score of 65. This is in
marked contrast to the zero scores on both counts reported for news articles not processed
by the rhyme-aware versifier. The number of rhymes that can be found by this procedure is
limited by the number of rhyming words available in the input text.

3.4.2. Target Form. If the specific poetic form of the result has to be constrained
a priori to comply with specific preset values for metric parameters, the system can rely
on these values to guide its exploration processes. Parameters that can be considered in
this way include verse length, poem length in verses, choice of rhymes, or pattern of
rhyme schemes.

In these cases, the main problem is that the input text received prove unsuitable for
adopting a poetic configuration according to the desired parameters. In these circumstances,
the resulting poetic effect after composition is likely to be poor. Subsequent improvement
will have to rely on powerful revision procedures.

The following set of versifiers allow specification of target values for some of these
parameters:

� Verse Length splits the given text according to a given target verse length.



24 COMPUTATIONAL INTELLIGENCE

TABLE 5. Comparative Scores for Versifiers with Different
Verse Length Targets (TL) for the Same Initial Population.

TL SP LB CR AR RP VI VR TS

5 70 77 42 77 28 96 41 61
7 68 76 41 74 30 94 42 60
8 73 78 37 70 26 93 41 59
11 75 79 24 61 28 96 37 57
14 70 78 23 61 31 92 80 62

SP, stress placement; LB, line break placement; CR, consonant
rhyme; AR, asonant rhyme; RP, rhyme patterns; VI, verse length
irregularity; VR, verse length repetition; TS, total score.

TABLE 6. Comparative Score for Versifiers with Different
Number of Verses in Poem (NV).

NV SP LB CR AR RP VI VR TS

50 65 75 30 60 34 96 70 61
40 65 74 30 56 36 94 77 61
30 67 76 18 45 31 95 77 58
20 63 78 18 39 24 95 85 57
10 75 70 14 29 40 80 80 55

SP, stress placement; LB, line break placement; CR, conso-
nant rhyme; AR, asonant rhyme; RP, rhyme patterns; VI, verse
length irregularity; VR, verse length repetition; TS, total score.

TABLE 7. Example of Poem Pro-
duced by the Fixed Line Length Versifier.

(..)
con Gaza, se encontró por
el contrario con un régimen
vecino que introduce armas
de contrabando y organiza
atentados terroristas
contra el vecino estado judío.

� Number of Verses computes the number of words in the draft, divides them over the
desired number of verses, and inserts line breaks to implement that distribution.

An interesting point to consider is the extent to which the establishment of different
values for the parameters affects the score for poetic effect of different input texts. To
explore this point, the same initial population of drafts in need of improvement in poetic
effect is subjected to several versions of a given versifier, each with different values of the
relevant parameter.

The average scores for the population of drafts produced by different versions of the
versifier for different verse length targets, plus the total combined score, are listed in Table 5.

The average scores for the population of drafts produced by different versions of the
versifier for different targets of number of verses for poem, plus the total combined score,
are listed in Table 6.



DECONSTRUCTING COMPUTER POETS 25

TABLE 8. Score for the Poem Produced by the Fixed Line
Length Versifier.

SP LB CR AR RP VI VR TS

83 82 12 45 16 95 58 55

Relevant values of the line length–related scores are high-
lighted in bold.
SP, stress placement; LB, line break placement; CR, conso-
nant rhyme; AR, asonant rhyme; RP, rhyme patterns; VI, verse
length irregularity; VR, verse length repetition; TS, total score.

In both cases, scores have improved significantly after the application of the versifier
with respect to the source text. For both cases, the improvement is comparable with the
free-form solution. As expected, none of the strategies for poetic form selection seems to
offer significant advantages over the others. And, in all cases, revision procedures would be
required to improve results to the levels shown by the target set of samples.

An example of poem produced by the fixe line length versifier is given in Table 7, and
the corresponding scores are given in Table 8. The target length of the line is fixed at eight
syllables. In this case, the length of the original poem makes it impractical to include it
completely. Note that lines in positions 1, 2, 3, and 5 have the required number of sylla-
bles, and lines in positions 4 and 6 have nine and ten syllables, respectively. The repeated
occurrence of lines of eight syllables warrants a high score of verse length irregularity—
95—but the proliferation of lines of different length brings the verse length repetition score
down to 58. This is due to the fact that instances where the target syllable count cannot be
reached exactly produce erratic values around the target length. The overall results are in
marked contrast to the zero scores on both counts reported for news articles not processed
by the rhyme-aware versifier. The scores that can be obtained for this feature are limited
by the additive counts of length in syllables of the sub-sequences of tokens present in the
input text. The score of nine syllables for the line in position 4 is actually due to a miscount
arising from the interaction between two vowels surrounding a y that the system incorrectly
interprets as a semi-vowel.

4. DISCUSSION

The advantages for a partial reimplementation as services of selected functionalities in
the poetry generation domain arise from the need to explore very different combinations of
them. The actual argument in favor of this is that many different combinations will have
to be considered before a satisfactory model of the poetry generation task is achieved. The
issue of whether these additional process of combination might also be automated is open,
but it is very likely that many years of hand-crafted explorations of different combinations be
required before a successful outcome is achieved. Until this happens, service-based imple-
mentations of necessary or useful functionalities will provide the advantage of allowing
each researcher to employ them without having to reimplement them from scratch. How-
ever, until a shared understanding of the task is reached, each researcher is likely to want to
define a combination of his own. This may include the possibility of combining the function-
alities available as services with other functionalities that are not yet available as services,
or indeed with functionalities that are difficult to implement as services. The nature of the
problem is such that it would be foolhardy to forego the advantages of service-oriented solu-
tions, but to the same extent, it would be foolhardy not to consider as part of the solution
other functionalities even if they are incompatible with service orientation.



26 COMPUTATIONAL INTELLIGENCE

The decision to exemplify the deconstruction procedure with examples of judges and
poets and not to include babblers or revisers is due to the additional complexity that would
be involved in defining clear interfaces for these cases. A reimplementation of a babbler as
a service would correspond to an ngram-based knowledge service that provided a text draft
built from a given language model. A choice would have be made on whether to accept
arguments specifying which language model to use, or to accept that each implementation of
the service would be tied to a given language model, defined internally. A reimplementation
of a reviser as a service would correspond to a more elaborate text rewriting service. As
described in Section 3.1, this would require definition of a clear interface to indicate what
type of revision might be required, or to accept that particular implementations of the service
would carry out specific rewriting operations.

Each one of the modules described in Section 3.2 fulfills better than the original modules
of the WASP system the requirements for a Web service described in Section 2.1. They are
now more loosely coupled than the original evolutionary operators, which makes them more
autonomous. They are reusable outside their original context of operation. They can still be
composed, as shown by the experiments that play one of them against the other described
in Section 3.4. In the case of both services, nonessential information is now abstracted
and encapsulated within the implementation, with only functional results being apparent
from without the service. Their statefulness is minimal, because neither the service nor
any of its clients needs to retain information about the state of the interaction to reach
successful outcomes.

From the point of view of the WASP system, the effort to isolate and refine the
functionality selected for deployment of services has required a slight redesign of the
functionalities involved so that they would provide valuable results beyond the original
settings employed for the initial version of the WASP system. The initial versions of
the judges were designed to identify and score specific types of line lengths and stan-
zas that were popular in sixteenth-century Spanish classical poetry: 11 syllable lines
known as endecasílabos and 8 syllable lines known as octosílabos, and stanzas such as
cuartetos and tercetos. The judges redesigned as services are now based on abstractions
that capture more generic aesthetic features based on principles of symmetry and repe-
tition, such as several lines having the same length in syllables, or a rhyme occurring
more than once in a given stanza. The poets have also been redesigned to include addi-
tional strategies such as dividing the text into lines based on possible rhymes rather than
just on line length. This opens the door to revision strategies based on lengthening or
shortening the line to place an existing rhyme at the end, as alternatives to the original
strategy of replacing the word at the end of the line when the rhyme did not match. In
addition, calibration procedures have been devised and applied that had not been consid-
ered for the original submodules. This is in line with the known advantages of service-
oriented development.

These services are not yet available publicly over the Web. To achieve this final stage, an
additional research effort would be required, related to two remaining requirements. Some
means would have to be established to describe the available functionality in some standard
way, possibly in terms of one of the description languages available as Web technologies.
This would fulfill the missing requirements of actually having standardized contracts to
describe the functionality, and the need for these services to be discoverable.

The poetry evaluation service proposed would be of use to any of the existing systems as
an additional evaluation mechanism for their poem outputs, because it provides a numerical
score designed to rate the poetic quality of a text beyond particular choices of metrical form.
In this sense, it may serve as a way of mining the conceptual space of outputs for possibly
valuable results not covered by the particular scoring function being used in each case. The



DECONSTRUCTING COMPUTER POETS 27

versifier service provides means for reconsidering output that is ill-formed with respect to
a given target form—lines too long or too short, too many or too few lines—and recast the
actual text into a more valuable poetic form. This could help some of the existing systems,
those whose procedures are tightly fixed on the line as a construction unit, to reach out
into parts of the conceptual space of possible poems that are currently falling outside the
scope of their traversal functions. It would also help them to recover instances of valuable or
interesting texts that would otherwise have been rejected solely on the grounds of ill-fitting
poetic form.

Overall, the large degree of variation in procedure and representation across the set of
systems reviewed suggests that all of these approaches have something to contribute, and
that progress toward human-level performance in this field may require the combination of
several or all of these into a single system. Such an approach would be made significantly
more plausible if the various subtasks involved were developed and deployed as services.

The concept of articulation outlined at the beginning of this article may help to refine
some of the concepts of computational creativity described in Section 2.2 in the particular
context of poetry generation. The process of analysis of the target poems, and the definition
of a particular representation, which we have called articulation, can be seen as actually
determining the conceptual spaces over which the system is going to search for solutions
to the poetry generation task. Sharples’s example of defining the universe of concepts in a
generative way based on a grammar would correspond to a particular choice for articulation.
If the selected articulation is based on ngrams, a different conceptual space would result. If
templates or complete verses are chosen as means of articulation, the resulting conceptual
spaces would be more restricted. Search would be easier, but coverage of possible resulting
poems would also be extremely reduced.

The described services as they stand do not constitute a full-fledged poetry generation
system. In terms of the terminology of the FACE model, they can be seen as elements to
be combined into one such system. The poet evaluation service described in Section 3.3
can be understood as an esthetic measure, and the versifier of Section 3.4 as a concept.
The specific results (poem drafts) produced by the versifier, paired together with the input
text in each case, can be considered as expression of the concept. If these systems were to
be combined with further services, or simply invoked by a larger system, they would be
acting as third-party contributions to a more complex tuple. In this sense, the composition of
Web services could be understood as a means of implementing creative systems described
by more complex tuples (possibly with humans acting as third parties in some cases). An
example of evolutionary programming in which humans contribute as third parties is the
PicBreeder system (Secretan et al. 2011), an evolutionary system for creating visual art
where humans play the role of fitness function.

5. CONCLUSIONS AND FURTHER WORK

A set of possible types for services relevant for poetry generation research has been
proposed based on a thorough review of existing systems. Within this set of types, two
particular services have been proposed as a redesign of original functionality of the WASP
poetry generator. Although the actual implementations are very simple and do not exploit
the full possibilities of the original model, they show the feasibility of using service-oriented
computing to combine different functionalities in the proposed way. The deconstruction
process has uncovered a number of issues that need to be faced when undertaking this type
of effort.



28 COMPUTATIONAL INTELLIGENCE

First, existing decompositions of a system into separate modules may not be optimal
for their implementation as Web services. To fulfill the requirements imposed by a service-
oriented architecture, a different breakdown may need to be designed. The concept of
articulation, both in terms of representation of poetry and in terms of system analysis, needs
to be considered as a guiding principle during this process of redesign.

Second, the publication of services of this type requires the development of appro-
priate means of describing their functionality in a way that allows the establishment of
standardized contracts and a discoverable interface. The main challenge to be faced here
is the development of a language rich enough and expressive enough to capture the subtle
nuances involved in the description of poetry in a formal format that can be interpreted by
machines. For the particular domain of poetry generation, such means had not been discov-
ered at the time of submission of this article, although an initial contribution was attempted
by Díaz-Agudo (2002). The development of specific ontologies for the domain of poetry,
and their formalization in standard languages and their public deployment in services such
as OntoHub (Kutz et al. 2014), would be a significant step forward in this sense. This is
considered as an interesting avenue for further work.

Third, some of the functionalities that need to be contemplated for the adequate eval-
uation of novelty in creative generation, such as keeping a record of prior results to avoid
repetition or production of unoriginal results, are incompatible with the requirement to
minimalize statefulness expected of Web services. By definition, a procedure for checking
whether each subsequent result is similar to previous results involves some way of keep-
ing track of the accumulated state of the system either in terms of outputs already seen
or in terms of solutions already attempted. This is considered undesirable behavior in a
service-oriented architecture. Additionally, it would incur difficulties related to distinguish-
ing between what Boden (1990) describes as p-creativity—which in this context might
correspond to a perception of novelty particular to a given client but possibly not apparent to
the service provider—and h-creativity—which would correspond to novelty in more abso-
lute terms, possibly defined in terms of every service provided by the system, and therefore
inapprehensible to specific clients who have only seen results served to them.

In summary, the deconstruction of creative systems into service-oriented solutions
would be valuable in several respects. It would make available to the general community of
researchers each and every effort at tackling particular aspects of the domain in question,
thereby broadening the view of the community. It would promote joint exploration of several
approaches in tandem, as opposed to the current tendency toward fragmentation of research
effort into simple solution focused very tightly on particular simplifications of the domain.
Under the circumstances, further work will be devoted to addressing this vision at different
levels, from pressing on with the development of services based on existing solutions to the
integration of existing creative services into existing working prototypes for particular tasks.

ACKNOWLEDGMENTS

The research reported in this article is partially supported by the Ministerio de Edu-
cación y Ciencia (TIN2009-14659-C03-01). The project ConCreTe acknowledges the
financial support of the Future and Emerging Technologies (FET) programme within the
Seventh Framework Programme for Research of the European Commission, under FET
grant number 611733. The author wants to thank the anonymous reviewers for the helpful
comments that have led to significant improvements.



DECONSTRUCTING COMPUTER POETS 29

REFERENCES

AAMODT, A., and E. PLAZA. 1994. Case-based reasoning: foundational issues, methodological variations, and
system approaches. AI Communications, 7(1): 39–59.

AGIRREZABAL, M., B. ARRIETA, M. HULDEN, and A. ASTIGARRAGA. 2013. POS-tag based poetry generation
with WordNet. In Workshop on Natural Language Generation (ACL 2013) (14th ed.).

BARBIERI, G., F. PACHET, P. ROY, and M. D. ESPOSTI. 2012. Markov constraints for generating lyrics with
style. In Ecai. Edited by L. D. RAEDT, C. BESSIRE, D. DUBOIS, P. DOHERTY, P. FRASCONI, F. HEINTZ,
and P. J. F. LUCAS, Vol. 242 of Frontiers in Artificial Intelligence and Applications. IOS Press: Amsterdam,
the Netherlands, pp. 115–120.

BODEN, M. 1990. Creative Mind: Myths and Mechanisms. Weidenfeld & Nicholson: London.

CARDOSO, A., T. VEALE, and G. A. WIGGINS. 2009. Converging on the divergent: the history (and future) of
the International Joint Workshops in Computational Creativity. AI Magazine, 30(3): 15–22.

CHARNLEY, J., S. COLTON, and M. T. LLANO. 2014. The FloWr framework: automated flowchart construc-
tion, optimisation and alteration for creative systems. In 5th International Conference on Computational
Creativity, Ljubljana, Slovenia, pp. 315–324.

COLTON, S., J. CHARNLEY, and A. PEASE. 2011. Computational creativity theory: the face and idea descriptive
models. In 2nd International Conference on Computational Creativity, Mexico City, Mexico, pp. 90–95.

COLTON, S., J. GOODWIN, and T. VEALE. 2012. Full-FACE poetry generation. In Proceedings of the
International Conference on Computational Creativity 2012, Dublin, Ireland, pp. 95–102.

COLTON, S., and G. A. WIGGINS. 2012. Computational creativity: the final frontier? In Ecai. Edited by L. D.
RAEDT, C. BESSIÈRE, D. DUBOIS, P. DOHERTY, P. FRASCONI, F. HEINTZ, and P. J. F. LUCAS, Vol. 242 of
Frontiers in Artificial Intelligence and Applications. IOS Press, pp. 21–26.

DAI, W., P. MOYNIHAN, J. GOU, P. ZOU, X. YANG, T. CHEN, and X. WAN. 2007. Services oriented knowledge-
based supply chain application. In Proceedings of the 2007 IEEE International Conference on Services
Computing, Salt Lake City, UT, pp. 660–667.

DAS, A., and B. GAMBÄCK. 2014. Poetic machine: computational creativity for automatic poetry generation
in Bengali. In 5th International Conference on Computational Creativity, Ljubljana, Slovenia,
pp. 230–239.

DÍAZ-AGUDO, B. 2002. Una aproximación ontológica al desarrollo de sistemas de razonamiento basado en
casos. Ph.D. Thesis, Universidad Complutense de Madrid, Madrid, Spain.

DIETRICH, A. J., S. KIRN, and V. SUGUMARAN. 2007. A service-oriented architecture for mass customization—
a shoe industry case study. IEEE Transactions on Engineering Management, 54(1): 190–204.

DING, H., and I. SØLVBERG. 2004. Exploiting extended service-oriented architecture for federated digital
libraries. In Proceedings of the 7th International Conference of Asian Digital Libraries, Shanghai, China,
pp. 184–194.

DUAN, Z., S. BOSE, P. A. STIRPE, C. SHONIREGUN, and A. LOGVYNOVSKIY. 2005. SOA without Web services:
a pragmatic implementation of SOA for financial transactions systems. In Proceedings of the 2005 IEEE
International Conference on Services Computing, Orlando, FL, pp. 243–250.

ENSOR, P. 1988. The functional silo syndrome. AME Target, 16: 16.

GERVÁS, P. 2000. WASP: evaluation of different strategies for the automatic generation of Spanish
verse. In Proceedings of the AISB-00 Symposium on Creative & Cultural Aspects of AI, Birmingham,
UK, pp. 93–100.

GERVÁS, P. 2001. An expert system for the composition of formal Spanish poetry. Journal of Knowledge-Based
Systems, 14(3–4): 181–188.

GERVÁS, P. 2013a. Computational modelling of poetry generation. In Proceedings of the AISB13 Symposium
on Artificial Intelligence and Poetry, Exeter, UK, pp. 11–16.

GERVÁS, P. 2013b. Evolutionary elaboration of daily news as a poetic stanza. In Proceedings of the IX Con-
greso Español de Metaheurísticas, Algoritmos Evolutivos y Bioinspirados - MAEB 2013, Madrid, Spain,
pp. 229–238.



30 COMPUTATIONAL INTELLIGENCE

GONÇALO OLIVEIRA, H. 2012. PoeTryMe: a versatile platform for poetry generation. In Proceedings of the
ECAI 2012 Workshop on Computational Creativity, Concept Invention, and General Intelligence, C3GI
2012, Montpellier, France, pp. 16–24.

JONES, S. 2005. Toward an acceptable definition of service. IEEE Software, 22(3): 87–93.

KRANJC, J., V. PODPECAN, and N. LAVRAC. 2012. Clowdflows: A cloud based scientific workflow platform. In
ECML/PKDD (2). Edited by P. A. FLACH, T. D. BIE, and N. CRISTIANINI, Vol. 7524 of Lecture Notes in
Computer Science. Springer: Heidelberg Berlin, pp. 816–819.

KURZWEIL, R. 2001. Ray Kurzweil’s Cybernetic Poet. Available from: http://www.kurzweilcyberart.com/
poetry/rkcp_overview.php. Accessed July 3, 2013.

KUTZ, O., F. NEUHAUS, T. MOSSAKOWSKI, and M. CODESCU. 2014. Blending in the hub: towards a collabo-
rative concept invention platform. In 5th International Conference on Computational Creativity, Ljubljana,
Slovenia, pp. 297–305.

MAEDA, J. 2001. Design by Numbers. MIT Press: Cambridge, MA.

MAHAJAN, R. 2006. SOA and the enterprise – lessons from the city. In Proceedings of 2006 IEEE International
Conference on Web Services, Chicago, IL, pp. 939–944.

MANURUNG, H. M. 1999. Chart generation of rhythm-patterned text. In Proceedings of the First International
Workshop on Literature in Cognition and Computers, Tokyo, Japan, pp. 15–19.

MANURUNG, H. M. 2003. An evolutionary algorithm approach to poetry generation, Ph.D. Thesis, University
of Edinburgh, Edinburgh, UK.

MANURUNG, R., G. RITCHIE, and H. THOMPSON. 2012. Using genetic algorithms to create meaningful poetic
text. Journal of Experimental & Theoretical Artificial Intelligence, 24(1): 43–64.

MISZTAL, J., and B. INDURKHYA. 2014. Poetry generation system with an emotional personality. In 5th
International Conference on Computational Creativity, Ljubljana, Slovenia, pp. 72–81.

MONTFORT, N., R. P. PÉREZ, D. F. HARRELL, and A. CAMPANA. 2013. Slant: a blackboard system to generate
plot, figuration, and narrative discourse aspects of stories. In Proceedings of the Fourth International Con-
ference on Computational Creativity. Edited by M. L. MAHER, T. VEALE, R. SAUNDERS, O. BOWN, and
A. SYDNEY, pp. 168–175.

OLIVEIRA, H., R. HERVÁS, A. DÍAZ, and P. GERVÁS. 2014. Adapting a generic platform for poetry generation to
produce Spanish poems. In 5th International Conference on Computational Creativity, Ljubljana, Slovenia,
pp. 63–71.

OULIPO. 1981. Atlas de littérature potentielle, Collection Idées, vol. 1. Gallimard: Paris, France.
PAPAZOGLOU, M. 2003. Service-oriented computing: concepts, characteristics and directions. In Proceedings

of the Fourth International Conference on Web Information Systems Engineering, Rome, Italy, pp. 3–12.
PEASE, A., and S. COLTON. 2011. Computational creativity theory: inspirations behind the face and the idea

models. In 2nd International Conference on Computational Creativity, Mexico City, Mexico, pp. 72–77.
QUENEAU, R. 1961. 100.000.000.000.000 de poèmes, Gallimard Series. Schoenhof’s Foreign Books,

Incorporated. Gallimard: Paris, France.
QUILIS, A. 1985. Métrica española. Ariel: Madrid, Spain.
RASHEL, F., and R. MANURUNG. 2014. Pemuisi: a constraint satisfaction-based generator of topical Indonesian

poetry. In 5th International Conference on Computational Creativity, Ljubljana, Slovenia, pp. 82–90.
REITER, E., and R. DALE. 2000. Building Natural Language Generation Systems. Cambridge University Press:

Cambridge, UK.
SECRETAN, J., N. BEATO, D. B. D’AMBROSIO, A. RODRIGUEZ, A. CAMPBELL, J. T. FOLSOM-KOVARIK, and

K. O. STANLEY. 2011. Picbreeder: a case study in collaborative evolutionary exploration of design space.
Evolutionary Computation, 19(3): 373–403.

SHARPLES, M. 1996. An account of writing as creative design. In The Science of Writing: Theories, Methods,
Individual Differences, and Applications. Edited by C. M. LEVY and S. RANSDELL. Lawrence Erlbaum:
Hillsdale, NJ.

SHARPLES, M. 1999. How We Write: Writing as Creative Design. Routledge: London.
SMEDT, T. D., L. NIJS, and W. DAELEMANS. 2014. Creative Web services with pattern. In 5th International

Conference on Computational Creativity, Ljubljana, Slovenia, pp. 344–346.

http://www.kurzweilcyberart.com/poetry/rkcp_overview.php.
http://www.kurzweilcyberart.com/poetry/rkcp_overview.php.


DECONSTRUCTING COMPUTER POETS 31

TOIVANEN, J. M., O. GROSS, and H. TOIVONEN. 2014. The officer is taller than you, who race yourself!
Using document specific word associations in poetry generation. In 5th International Conference on
Computational Creativity, Ljubljana, Slovenia.

TOIVANEN, J. M., M. JÄRVISALO, and H. TOIVONEN. 2013. Harnessing constraint programming for
poetry composition. In Proceedings of the International Conference on Computational Creativity 2013,
Sydney, Australia, pp. 160–167.

TOIVANEN, J. M., H. TOIVONEN, A. VALITUTTI, and O. GROSS. 2012. Corpus-based generation of content
and form in poetry. In Proceedings of the International Conference on Computational Creativity 2012,
pp. 175–179.

VEALE, T. 2013a. Less rhyme, more reason: Knowledge-based poetry generation with feeling, insight and
wit. In Proceedings of the International Conference on Computational Creativity 2013, Sydney, Australia,
pp. 152–159.

VEALE, T. 2013b. A service-oriented architecture for computational creativity. Journal of Computing Science
and Engineering, 7(3): 159–167.


	Deconstructing Computer Poets: Making Selected Processes Available as Services
	Introduction
	Previous Work
	Services as a Unit of Modularization for Software Systems
	Computational Creativity
	Articulating the Representation of Poetry in Existing Systems
	Articulating the Modularity of Creative Computational Systems

	DEVELOPING POETRY-RELATED PROCESSES AS SERVICE 
	A Proposal for Poetry-Related Services
	Poetic Fragment Provision
	Template Provision
	Grammar-Based Generation
	Ngram-Based Knowledge
	Queriable Knowledge Bases
	Poetic Expertise
	Rewriting Capabilities
	Conclusions on the Proposed Services

	Designing Examples of Useful Poetry-Related Services
	A Poetry Evaluation Service
	A Versifier Service
	Free Form
	Target Form


	Discussion
	Conclusions and Further Work


