Poetry Generation in COLIBRI

Belén Diaz-Agudo and Pablo Gervas and Pedro A. Gonzélez-Calero

Dep. Sistemas Informdéticos y Programacién
Universidad Complutense de Madrid, Spain
email: {belend, pgervas, pedro}@sip.ucm.es

Abstract. CBROnto is an ontology that incorporates common Case-
Based Reasoning (CBR) terminology and serves as a domain-independent
framework to design CBR applications. It is the core of COLIBRI, an
environment to assist during the design of knowledge intensive CBR sys-
tems that combine cases with various knowledge types and reasoning
methods. CBROnto captures knowledge about CBR tasks and methods,
and aims to unify case specific and general domain knowledge represen-
tational needs. CBROnto specifies a modelling framework to describe
reusable CBR Problem Solving Methods based on the CBR tasks they
solve. This paper describes CBROnto’s main ideas and exemplifies them
with an application to generate Spanish poetry versions of texts provided
by the user.

1 Introduction

Even though any Case-Based Reasoning (CBR) system relies on a set of previous
specific experiences, its reasoning power can be improved through the explicit
representation and use of general knowledge about the domain. Our approach to
CBR is towards integrated knowledge based systems (KBS) that combine case
specific knowledge with models of general domain knowledge. Our ongoing work
is the development of COLIBRI (Cases and Ontology Libraries Integration for
Building Reasoning Infrastructures), an environment to assist during the design
of knowledge intensive CBR (KI-CBR) systems [2, 4] that combine concrete cases
with various knowledge types and reasoning methods.

COLIBRTI’s architecture is influenced by knowledge engineering approaches
such as Role Limiting Methods [11], CommonKADS [12] or Components of
Expertise [13], where a KBS is viewed as consisting of separate but intercon-
nected collaborating components. Typically, components of a KBS include do-
main knowledge and Problem Solving Methods (PSMs), that represent com-
monly occurring, domain-independent problem-solving strategies.

COLIBRI views KI-CBR systems as consisting of collaborating knowledge
components, and distinguishes different types of knowledge [14]. Ontologies de-
scribe the structure and vocabulary of the Domain Knowledge that refers to the
actual collection of statements about the domain. Tasks correspond to the goals
that must be achieved. PSMs capture the problem-solving behavior required to
perform the goals of a task. And Inferences describe the primitive reasoning
steps during problem solving.



The core of the COLIBRI architecture is CBROnto, an ontology that incor-
porates common CBR terminology and problem solving knowledge that serves
as a domain-independent framework to design KI-CBR systems [5]. CBROnto
is formalized in LooM [10] a Description Logics (DLs) system on top of which
COLIBRI is built. From a general perspective CBROnto can be considered a
knowledge representation ontology [14] that captures representation primitives
commonly used in the case-based representation languages. Our aim is to propose
a rich framework to represent cases based on the terminology from the CBROnto
together with a reasoning system that works with such representations. We work
with a structured case representation where individuals are concept instances
and concepts are organized in a hierarchy with inheritance. In our approach,
cases are linked within a semantic network of domain knowledge and will be
described by using both the domain vocabulary provided by the domain model,
and the CBR vocabulary provided by CBROnto. Another facet of CBROnto is
as an unifying framework that structures and organizes different types of knowl-
edge in KI-CBR systems according to the role that each one plays. CBROnto
terms serve as a bridge that allows the connection between expert knowledge and
previously defined domain ontologies, and helps in discovering and modelling the
knowledge needed for a CBR system. As a last facet, CBROnto is a task and
method ontology whose contents are described in the next section.

2 CBROnto as a Task and Method Ontology

A useful way of describing problem solving behavior is in terms of the tasks to be
solved, the goals to be achieved, the methods that will accomplish those tasks,
and the domain knowledge that those methods need. A description along these
lines is referred to as a knowledge level description. Although various authors
have applied knowledge level analysis to CBR systems, the most important of
these efforts is the well-known CBR task structure developed by Agnar Aamodt
and Enric Plaza [1] influenced by the Components of Expertise Methodology
[13]. At the highest level of generality, they describe the general CBR cycle by
four tasks: Retrieve the most similar case/s, Reuse its/their knowledge to solve
the problem, Revise the proposed solution, and Retain the experience. The four
CBR tasks each involve a number of more specific subtasks. There are methods
to solve tasks, that either decompose a task in subtasks or solve it directly.
CBROnto includes a task ontology influenced by Aamodt and Plaza’s structure
at the first level and identifies a number of alternative methods for each task,
where each one of the methods sets up different subtasks, that must be solved
in their turn. This kind of task-method-subtask analysis is carried on to a level
of detail where the tasks are primitive with respect to the available knowledge.

CBROnto includes a library of PSMs associated to the CBROnto tasks. The
CBROnto PSMs are described by relating them to terms within its ontology
of tasks, methods and domain characteristics. The method ontology includes
method description language terms used to formalize PSMs and defines concepts
and relationships that are used by the methods. In [5] CBROnto’s method de-



scription language is described together with a mapping mechanism to bridge the
gap between domain knowledge and PSMs based on a DLs classification strategy.
The explicit representation of knowledge requirements based on the CBROnto
terminology makes easy to identify and solve the PSM’s lack of knowledge.

COLIBRI uses an automatic, general and recursive task resolution mecha-
nism that starts with the task to solve, and finds the alternative methods whose
competence subsumes this task. Decomposition methods divide the task in sub-
tasks and the resolution process is applied recursively for each subtask. Resolu-
tion methods finalize recursion and solve the task:

Resolve (iT)

1.Get the method individual to resolve the task: iM

2.Get the method functional specification iFS

3.Get the method requirements iReq

4.If iM is a decomposition_method,
Applying iFS answers with the sequence of subtaks
to solve: iSTHY, ...., iSTh

ResolveSeq(iSTh , ResolveSeq(iSTn-1, ..., ResolveSeq( iST2 , Resolve( iST1))...))
Else % iM is a resolution method
Applying iFS with iReq solves the task
When designing a new CBR application, COLIBRI offers alternative methods

whose competence subsumes this task. The CBR system designer fixes one (or
more) preferred method to solve the task in the application, and configure it
according to the required behavior. We distinguish between three types of inputs
(or requirements) to configure a method:

— The method knowledge requirements represent knowledge elements that the
method uses and that must be defined before the method can work, such as
similarity measures or relevance criteria for retrieval.

— The method input requirements are external inputs to the method, i.e., they
are not represented as explicit elements integrated within the domain knowl-
edge. These inputs are fixed by the CBR application designer and will be
shared by all the method executions.

— The method parameter requirements are also external inputs to the method,
but they change within different executions of the method (for example, the
query). They are specified by the final user of the CBR application.

The following sections introduce some of the CBROnto methods organized
around the tasks they resolve, i.e. their competence.

2.1 Retrieval Methods

Retrieval methods are those whose competence is the retrieval task. CBROnto
formalizes several retrieval methods that have been described in [3,4] and that
are summarized here. Each retrieval method decomposes the retrieval task into
one or more of the following subtasks that are solved themselves by methods
that depends on the retrieval method:

— Obtain cases. Select the initial case set (CS) to apply the following subtasks.



— Assess similarity. Assess the similarity between the query and each one of
the cases in CS.

— Select cases. Select the case or cases to be returned as retrieval result based
on the similarity assessment.

The computational method computes all the similarity values during the re-
trieval process. The CBROnto similarity framework allows representing, in a
declarative way, several alternatives to compute numerical similarity values for
complex case representations, where the similarity knowledge contained in the
domain knowledge base participates in the similarity assessment.

The relevance criteria method uses the query language to enable the user to
describe the current situation and interests. Relevance criteria are defined as the
criteria according to which the system asserts that a case is relevant to a prob-
lem and more relevant than any other cases. CBROnto uses relevance criteria
expressed in first order logic using LooMm, which allows to express complex con-
ditions that involve any number of cases interrelated by multiple relationships.

Other method used in the example is the representational method that assigns
similarity meaning to the path joining two cases in the case organization struc-
ture and the domain knowledge base, and retrieval is accomplished by traversing
that structure starting from the position of the query. We have applied this choice
using an instance classification method [4] that uses the subsumption links to de-
fine the distance between two individuals. The usefulness of this kind of approach
will depend on the knowledge structure where the cases are located.

Besides the retrieval methods, CBROnto —mainly through its relation hierar-
chy— allows to represent different similarity types depending on the contributing
terms, namely it allows defining different similarity types depending on a seman-
tic classification of the attributes —relations— below the CBROuto terms.

2.2 Adaptation and Revision Methods

CBROnto’s adaptation methods are based on using domain independent knowl-
edge in the form of transformation operators [8]. Adaptation knowledge is made
up of a set of abstract transformation operators (as SUBSTITUTE, ADD and RE-
MOVE) and memory search strategies to find the information in the domain
knowledge, needed to apply these operators.

In this paper we describe one adaptation method that is based on substitut-
ing some elements in the retrieved case according to the query. Substitutes are
searched in the domain model by using memory search strategies. CBROnto pro-
vides domain independent strategies and the mechanisms for the domain expert
to add specific domain memory search strategies. Besides, other memory search
strategies are learned from user’s interactions. A memory search strategy goal is
to find an item satisfying certain restrictions. That is why some of the methods
used to solve the memory search task are shared with the case retrieval task.
For example, to find candidates to substitute element ¢ in the solution we can
use the computational method with domain specific similarity measures using 4
as the query, or use the instance classification method to get instances classified



near ¢ in the hierarchy, or use the relevance criteria method to retrieve instances
satisfying a given criteria of similarity regarding i.
The method of adaptation by substitution leads to the following subtasks:
— Copy solution task
— Modify solution task leads to the subtasks (cycle):
o Find adaptable parts task
o Apply substitution leads to the subtasks (cycle):
* Find substitutes task
x Select substitute task
* Substitute item task
x Validate task

If the memory search process performed during the find substitutes task does
not find acceptable items, the substitute item task will not be performed. After
adaptation, the revision task (when manual) allows the user to substitute an
item. The learning methods learn both the failed and the successfully applied
memory search strategies, and the manually added substitute. Revision Methods
are those whose competence is the Rewvise task, that is decomposed in two sub-
tasks: system revision and user revision. Only one of them is mandatory, when
both are specified they are solved in sequence.

The revision task leads to the following subtasks (cycle). Note that each loop
of the cycle finds one problem and tries to repair it.

— FEwvaluation task

— Repair task leads to the subtasks:
e Find repair strategy task
o Apply repair strategy task

In this paper we do not explain user revision method, but exemplify the
self revision method where the evaluation and repair tasks are solved by the
self evaluation and repair methods, respectively. Self evaluation is based on DLs
classification as it compares the classification between the adapted case and the
retrieved case. The concepts under which the retrieved case is classified in the
domain model are used as declarative descriptions of the properties that should
be maintained by the adapted case after transformations. Namely, substitutions
must not alter the classification of the case. If they do, the case requires repara-
tion. the repair needs are identified by the automatic classification of the adapted
case under a certain type of problem. Repair strategies are linked to the concepts
representing adaptation problems, and, thus, can be directly obtained after ev-
ery classification of the problem case. When it fails the user will be in charge of
repairing the case. Our approach is related with the one proposed in [9] where
adaptation cases include knowledge about one-step transformations to solve a
type of problems.

This generic method depends on the type of problems and repair strategies
that are specifically identified and represented for each domain. We are using an
idea that is common for other automatic revision methods, namely, the need of
an explicit representation of the system task, i.e., the goals that are required for
a case to be correct. Our explicit model of the domain allows representing these



goals as classification properties over the adapted case, i.e., the case is correct if
it is classified according to certain concepts. We typically use the classification of
the retrieved case as the goals to be satisfied by the adapted case. The adapted
case is initialized to an exact copy of the retrieved case that, classified under the
concepts; after the resolution of the modify task it might not be recognized as
an instance of some of these concepts. The repair task is in charge of repairing
these failures. The semantic definitions of the domain concepts allows to know
why the individual has not be recognized as an instance of a certain concept.
The self repair method uses as the correction measure the conjunction of the
concept definitions that must be satisfied by a correct case after adaptation. The
evaluation method is based on the LoOM instance recognition mechanism.

3 Implementing Poetry Generation with COLIBRI

Composing poetry is an art not particularly well suited for algorithmic formula-
tion. However, for the specific case of formal poetry, it does have certain overall
characteristics that have to be met by any candidate solution. What is particu-
larly interesting from the point of view of illustrating the operation of COLIBRI
is the fact that the description of these characteristics involve a complex set of
interacting concepts that have to be taken into account.

Another reason involved in the choice of poetry generation as an example
of the use of COLIBRI is the existence of previous work along similar lines
[6,7] —developed in terms of CBR but not adhering to the CBROnto concepts
and the COLIBRI way of chaining them together to form a CBR application—
provides a useful reference point from which to discuss the possible advantages
and disadvantages of the approach.

The specific process that has been chosen to illustrate this point is concep-
tually based on a procedure universally employed when not-specially-talented
individuals need to personalise a song, for instance, for a birthday, a wedding,
or a particular event: pick a song that everybody knows and rewrite the lyrics
to suit the situation under consideration. This particular approach to the prob-
lem of generating customised lyrics or poetry has the advantage of being easily
adapted to a formal CBR architecture. No claims whatsoever regarding the gen-
eral suitability of this approach for poetry composition in a broad sense should
be read into this particular choice.

3.1 Basic Rules of Spanish Poetry

Formal poetry in Spanish is governed by a set of rules that determine a valid
verse form and a valid strophic form. A given poem can be analysed by means of
these rules in order to establish what strophic form is being used. Another set of
rules is applied to analyse (or scan) a given verse to count its metrical syllables.

Given that words are divided into syllables and each word has a unique
syllable that carries the prosodic stress, the constraints that the rules have to
account for are the following:



(defconcept Poem :is (defconcept Word-occurrence :is

(:and Domain-concept (:and Domain-concept
(:all has-stanza Stanza) (:all precedes Word-occurrence)
(:at-least 1 has-stanza))) (:at-most 1 precedes)

(:the of-word Word)))
(defconcept Stanza :is

(:and Domain-concept (defconcept Non-final-word-occurrence :is
(:all has-line Poem-line) (:and Word-occurrence
(:at-least 1 has-line))) (:exactly 1 precedes)))

(defconcept Poem-line :is (defconcept Word :is

(:and Line (:and Domain-Concept
(:all has-word Word-occurrence) (:the text String)
(:at-least 1 has-word) (:the syllables Number)
(:the first-word Word-occurrence) (:the stress Number)
(:the rhyme String) (:the rhyme String)
(:the syllables Number) (:the stVowel Number)
(:all follows-on Poem-line) (:the endVowel Number)
(:at-most 1 follows-on))) (:all has-P0STag POSTag)

(

:at-least 1 has-P0STag)))

Fig. 1. Structural definitions for the poetry domain.

Metric Syllable Count. Specific strophic forms require different number of
syllables to a line. Metric syllables may be run together thereby shortening
the syllable count of the line involved. When a word ends in a vowel and the
following word starts with a vowel, the last syllable of the first word and the
first syllable of the following word constitute a single syllable. This is known
as synaloepha, and it is one of the problems that we are facing.

Word Rhyme. Each strophic form requires a different rhyming pattern.

Stanza or Strophic Form. For the purpose of this application only poems of
the following regular strophic forms are considered: cuarteto, a stanza of four
lines of 11 syllables where the two outer lines rhyme together and the two
inner lines rhyme together; and terceto, a stanza of three lines of 11 syllables
where the either the two outer lines rhyme together or the three lines have
independent rhymes.

3.2 Poetry Domain Knowledge Ontology

The COLIBRI approach to building KI-CBR systems takes advantage of the
explicit representation of domain knowledge. allowing to integrate existing on-
tologies about a particular domain of application. To our regret, we were unable
to locate an existing ontology about formal Spanish poetry. An initial sketch of
such an ontology has been developed for purposes of illustration, resulting in a
knowledge base containing 86 concepts, 22 relations and 606 individuals.
Figure 1 shows the LooM definitions needed to represent the structure of a
poem, a text made up of words, and built up as a series of stanzas, which are
groups of a definite number of lines of a specific length in syllables, satisfying a
certain rhyme pattern. Going from the parts to the whole, each word is repre-
sented as an individual which is an instance of the domain concept Word and
is described in terms of the following attributes: the name of that particular
word (text), the number of syllables that the word has (syllabes), the position
of the stressed syllable of the word counted from the beginning of the word



(defconcept Terceto :is (defconcept Terceto-uno-tres :is

(:and Stanza (:and Terceto
(:exactly 3 has-line) (:relates rhymes-with first-line
(:the first-line Endecasilabo) third-line)))
(:the second-line Endecasilabo)
(:the third-line Endecasilabo))) (defrelation rhymes-with :is
(:satisfies (?x 7y)
(defconcept Endecasilabo :is (:and (Poem-line 7?x)
(:and Poem-line (Poem-line 7y)
(:fillers syllables 11))) (:for-some 7z
(:and (rhyme ?x 7z)
(defconcept Rhymed-poem-line :is (rhyme ?y 72)))))

(:and Poem-line
(:exactly 1 rhymes-with)))

Fig. 2. Definition of a terceto stanza

(stress), the rhyme of the word (rhyme), whether the word begins with a vowel
(stVowel), whether the word ends in a vowel (endVowel), and the part-of-speech
tags associated with that word (has-POSTag).

In our model of the domain we distinguish between words —instances of
Word— and particular word occurrences —instances of the domain concept Word-
occurrence. In the representation of the poems we use a different individual for
each occurrence of a particular word, though various individuals may be refer-
ring back to the same instance of Word. Each occurrence is related to the word
it represents through the of-word relation, and with the word occurrence that
follows it in a line through the precedes.

A line is represented as an instance of Poem-line, which, in addition to a
number of word occurrences, represents the rhyme, the number of syllables,
whether the sentence follows on onto the next line of the poem, and, for efficiency
reasons, which one is the first word of the line. Each Stanza is built up from a
number of Poem-lines, and each Poem is related to the stanzas that make it up.

Using the basic vocabulary we can define different types of stanza such as the
one shown in Figure 2. A Terceto is defined as a stanza of three lines of eleven
syllables. Although not shown in the figure, the relation has-line subsumes first-
line, second-line and third-line, and, therefore, Terceto is a Stanza with at-least
1 has-line. The lines of a Terceto are Endecasilabos defined as Poem-lines where
11 is the value of the attribute syllables. Finally, a Terceto-uno-tres is a Terceto
where the two outer lines rhyme together. The model identifies that two lines
rhyme together when a common rhyme exists between them.

3.3 The Cases

Cases describe a solved problem of poem composition. We describe cases using
the CBROnto case description language and domain knowledge terminology.
Although different possibilities can be explored, for the sake of simplicity we
choose a case where both description and solution is a given poem.

In COLIBRI the definition of the structure of the cases is part of the process
of integrating the domain knowledge within CBROnto, in order to bridge the gap
between domain terminology and CBR terminology. Integration is based on clas-
sification, domain concepts and relations are marked as subconcepts and subre-



slgt2:PoetryCase
description | poe-slgt2:Poem

solution poe-sigt2:Poem
has-stanza | st1-poe-sigt2:Stanza
first-line 11-st1-poe-sigt2:Poem-line
first-word no221:Word-occurrence
rhyme ada

syllables 1

follows-on | 12-st1-poe-sigt2:Poem-line
has-word no221:Word-occurrence

has-word so_lo243:Word-occurrence
has-word en413:Word-occurrence

has-word plata485:Word-occurrence
precedes | 0484:Word-ocurrence
of-word plata:Word

text plata
syllables 2
stress 1
rhyme ata
stVowel 0
endVowel 1

has-POSTag | ADJGMS:POSTag
has-POSTag | ADJGFS:POSTag
has-POSTag | NCFS:POSTag
has-POSTag | ADJGMP:POSTag
has-POSTag | ADJGFP:POSTag
has-word 0484:Word-occurrence

has-word viola321:Word-occurrence

has-word truncada122:Word-occurrence

second-line | 12-st1-poe-sigt2:Poem-line

third-line 13-st1-poe-sigt2:Poem-line

Fig. 3. Case Representation Example

lations of CBROnto concepts and relations. In this way, the domain-independent
PSMs can be applied to the domain-specific information.

The first thing to do in the design phase is to define a new type of case, i.e an
specialization of the concept Case, and choose which concept within the domain
model will represent a case description (mandatory) and which one will represent
a solution (optional). Figure 3 shows a partial view of a case representing a
poem (Each case that is added to the system adds an average of 50 individuals
to the knowledge base). In the example, the new case type is PoetryCase whose
description and solution are both the same instance of the Poem:

no sélo en plata o viola truncada
se vuelva mas td y ello juntamente
en tierra en humo en polvo en sombra en nada *

Although no semantic information about the attributes is used here, the
integration phase could also determine that, for instance, precedes and follows-on
relations are a kind of before attribute, or that the relations has-stanza, has-word,
and has-line are a kind of has-part attribute. That integration would provide
the semantic roles to be used in the predefined similarity types. For adaptation

! not just to silver or limp violets // will turn, but you and all of it as well // to earth,
smoke, dust, to gloom, to nothingness



purposes, we could also classify follows-on under depends-on CBROnto relation,
to indicate that if a line which follows onto the next is modified, then the next
one may be affected, and its adaptation should be considered.

3.4 Retrieval

The query is given as a sequence of words that we want to inspire our poem, and
it is represented as an instance of PoetryCase with description but, obviously,
without solution, consisting of just one line with the given Word-occurrences.

In the example, the cases with the largest number of POS tag in common with
the query should be retrieved. This way, it will be easy to substitute words in the
retrieved poem with words from the query without loosing syntactic correctness.
Therefore, the obtain cases retrieval subtask is easily defined as a LOOM query
—a relevance criterion— that retrieves poems based on this requirement.

To solve the select cases retrieval subtask we select the cases to be retrieved
by computing the similarity between the query and every retrieved case. For the
example, we associate a similarity measure with the concept PoetryCase that
collects the similarity among the Words of the descriptions of two poems. A
similarity measure for the concept Word is also needed, taking into consideration
all of the word attributes.

Given this configuration of the tasks, if we —carefully— choose as reference
words to inspire our poem “una boca ardiente pase techo y suelo” we will retrieve
the poem used as example in the previous section.

3.5 Adaptation

The high level idea of the adaptation process is to substitute as many words from
the poem with words from the query, if possible in the same order as appearing in
the query, without loosing the syntactic structure of the poem lines. We assume
that the query is a meaningful sentence and, therefore, if we can accommodate
those words into the poem in a similar order it is plausible to think that the new
poem will reflect, to a certain extent, the original message in the query. In order
to maintain the syntactic correctness of the poem, and taking into account that
the system has no additional syntactic knowledge, we constrain substitutions to
words with exactly the same POS tag. The adaptation algorithm runs, then, as
follows: for every word in the poem, the first word in the query with the same
POS tag is chosen as its substitute, if none exists then the word in the poem
remains unchanged; for every substitution, the word from the query is removed
so it is used only once. This process iterates until a whole cycle is done without
substitutions or all the words in the query have been included in the poem. In
the example this process results, in just one cycle, in:

no sélo en boca y viola ardiente
se pase mas td y ello juntamente
en tierra en techo en suelo en sombra en nada >

% not just to mouth or burning violets // will pass, but you and all of it as well // to
earth, shelter, dirt, to gloom, to nothingness.



where all the words from the query (italicized text) have been arranged except
una because there was no determiner in the original poem.

In order to make this process possible, the designer needs to choose and
configure the generic adaptation methods. The method of adaptation by substi-
tution is chosen, which, as described in Section 2.2, leads to the subtasks: copy
solution, find adaptable parts, and apply substitution.

There is only one method available for copying the solution, and it does
not need any customization. The method for finding adaptable parts in the
solution needs to know where in the solution can be accessed the candidates for
substitution which, in this case, are the poem words. This information is provided
to a new instance of the generic method through the input requirement toadapt.
toadapt is parameterized with the chain of attributes which has to be composed
in order to access to the poem words from the entity representing the whole case:

(put-input-requirements ’ifind_adaptable_parts_method
?((toadapt ’((solution) (stanza) (has-line) (has-word) (of-word)))))

Notice how we can profit from the is-a hierarchy of attributes, by using has-
line which subsumes first-line, second-line and third-line. More sophisticated
configurations could be provided for this method to indicate, for example, that
only non final words are to be considered for substitution

(put-input-requirements ’ifind_adaptable_parts_method
> ((toadapt ’((solution) (stanza) (has-line)
(has-word Non-final-word-occurrence) (of-word)))))

which could be useful if we would like to maintain the rhyme of the final words.
The output of the previous method is the input to the method responsible for
applying the substitutions. This method, as described in Section 2.2, is a cycle
which iterates through the list of candidates for substitution: finding substitutes,
selecting one of them, making the substitution, and validating it. Notice that this
local validation —word-based—is different to the global validation described in the
next section —poem line or poem-based—. The process terminates when the list
of candidates gets exhausted, or when an iteration ends without substitutions.
In order to solve the task of finding substitutes, we need to choose and
configure one of the available retrieval methods. In the example we are interested
on finding words in the query with the same POS tag. We may choose the
method to obtain items by classification in representational retrieval, where we
look for words which POS tag attribute is classified under the same concept as
the candidate for substitution. And, then, further parameterize this method to
consider only those words included in the query, instead of the whole vocabulary:
(put-input-requirements
’ifind_substitutes_items_by_classification_method
> ((unique_source ’(query solution stanza has-line has-word of-word))))

If more than one substitute have been retrieved we need to apply a selection
method to choose one of them. Applicable methods are: user selection, random
selection, and similarity based selection. Since there is a similarity function as-
sociated with the concept Word, we could choose the similarity based selection



method, so that the substitute would be selected taking into consideration all
of the word attributes, apart from the POS tag which serves as the filter in the
task of finding substitutes. Nevertheless, since substitutes are restricted to those
appearing in the query, it is unlikely to find more than one, and, for the example
to work, we just need random selection.

The last two tasks of making the substitution and validating it, are trivial in
the example, since the old value is directly substituted by the new one, and no
local validation is needed when we only want to maintain syntactic correctness
which is guaranteed by employing words with the same POS tag.

The problem with this adaptation process is that, although it preserves the
syntactic structure of the retrieved poem, its metric characteristics will be prob-
ably lost. As discussed above, this includes number of syllables per line, and
rhyme of the final words of lines 1 and 3. The revision process repairs, whenever
possible these characteristics.

3.6 Revision

After adaptation, the self revision method is used to solve the revision task, and
is in charge of evaluating and, if needed, repairing the proposed solution. As it
was described in Section 2.2, the self evaluation method compares the classifica-
tion between the adapted case and the retrieved case. The concepts under which
the retrieved case is classified in the domain model are used as declarative de-
scriptions of the properties that should be maintained by the adapted case after
transformations. In the example the retrieved case is recognized as Poetry Type,
the solution is recognized as Poem, the stanza is recognized as a Terceto-uno-
tres, and each one of its poem lines are recognized as Endecasilabos. Besides, the
first and third poem lines are recognized as Rhymed-poem-line.

Before substitutions, the copy of the retrieved case that will be adapted
has the same classification. If substitutions provokes a change in the concepts
the system recognizes for a certain individual, the evaluation task classifies this
individual below a concept representing a type of problem. The type of problems
(subconcepts of the FailureType CBROnto concept) have associated a repair
strategy that tries to put the individual back as an instance of the goal concept.

In the example, we have substituted a word by other of the same POS tag but
possibly different rhyme, or number of syllables. Two problem types has been
identified during the design of the application. The first one is called Rhyme-
failure meaning that a poem line should rhyme and it does not. The domain
concepts involved in this failure are the concepts that represent the rhyming
strophic forms Terceto-uno-tres and Cuarteto, and the Rhymed-poem-line con-
cept. When an individual leaves these concepts it is recognized as an instance of
Rhyme-failure. The second one is called Syllables-count-failure and the domain
concepts involved are Endecasilabo —11 syllables— and Octosilabo —8 syllables.

Next step is to define repair strategies associated to problem types. Each
strategy is represented as an instance of the concept Repair-strategy, that are
linked to the FailureType concept through the relation has-repair-strategy. The
self repair method divides the repair task into two subtasks: find strategy and



apply strategy. The two subtasks are solved in a loop that finishes when no
failures are found and no strategies can be applied. To find the next strategy
that will be applied, the find strategy method searches in the hierarchy rooted
by FailureType and finds the strategy that is associated to the most specific
concept in the hierarchy of problem types. The next step is applying the strategy
to the individual that is classified below the problem type concept.

The revision is implemented as the process of substituting words in the
adapted poem so that the detected problems can be repaired. For the exam-
ple, we are defining a repair strategy to the problem type Rhyme-failure. The
instances of this problem type are the stanzas where we want to modify certain
words. We can take advantage of the CBROnto PSMs whose competence is the
adaptation task. The method splits the task into subtasks whose methods has
to be configured (as we did to configure them for the adaptation task). In order
to repair the rhyme of the final words we have to select a word to substitute and
then find its replacement:

— The items to be substituted in the stanza are the final word occurrences of
the poem lines that belong to the Rhyme-failure concept. Besides, in order
not to loose the effects of the adaptation, in the revision we are constrained
to substitute only those words which do not appear in the query. This is
configured as:

(put-input-requirements ’ifind_adaptable_parts_method
> ((toadapt ’((has-line rhyme_failure)
(has-word (:and Final-word-occurrence
Not-query-component)) (of-word)))))

— The find substitutes method is configured to use a relevance criteria method
that finds substitutes with the same POS tag and the proper rhyme depend-
ing on the strophic form. The algorithm is to select the first word of the
broken rhyme which does not come from the query, and if both words were
in the query then to ask the user.

In the example we have lost the rhyme of the final words of first and third
lines, and the first line has 9 syllables instead of 11. The word nada is the one to
be substituted as it does not belong to the query. In order to find a replacement
for this word, we search for a word with the following requirements: has the
same POS tag as nada, and rhymes with ardiente. If more than one word were
retrieved then the selection process would come into play, and the most similar
to nada, according to the rest of word attributes, would be selected. If there is
no word under the given requirements, then the process fails and the user could
be asked for help. In the example, the only word retrieved is serpiente, which
substitutes nada and repairs the rhyme of the final words of first and third lines.

The next loop tries to repair the number of syllables of the poem lines.
The order between the repairing processes depend on the classification of the
problem types and is important because the solution to a problem may cause a
new problem of different type. In the example, since serpiente has 1 more syllable
than nada the third poem line is not an endecasilabo (11 syllables) any more.



When fixing the number of syllables of a poem line we take into account that
this is the second process of revision, and therefore an additional constraint is
not to substitute the last word of a rhymed line.

In order to repair the first line, we select as candidate for substitution the
shortest word which was not in the query and is not a final word: no and en.
Then we search for words with one more syllable than the candidate one, and
the same POS tag. For no we find no candidate, but we find para as a substitute
for en (both are prepositions). With this substitution, the number of syllables is
automatically recomputed, and although para has only one more syllable than
en, the new line is an endecasilabo because by substituting en we have also break
the synaloepha between sdlo and en.

In order to repair the third line, we select as candidate for substitution the
longest word which was not in the query and is not a final word: tierra and
sombra. We choose the first one and then search for a word with one syllable
(one less than tierra), with the same POS tag, and ending with a vowel in order
not to break the synaloepha. The retrieval word is tia which repairs the poem
line into 11 syllables, leading to poem (words marked with * were obtained in
the revision process):

no sélo para* boca y viola ardiente
se pase mas tu y ello juntamente
en tia* en techo en suelo en sombra en serpiente* 3

4 Conclusions and Future Work

We have described CBROnto’s task and method ontology and its application to a
CBR system to generate Spanish poetry versions of texts provided by the user.
The problem chosen as an example had already been tackled elsewhere using
CBR. The approach described here presents several advantages with respect to
the original one. First, the use of the frame of tasks and methods of CBROnto
allows a very clear explicit representation of all the decisions that need to be
taken. The domain allows many possible ways of solving the problem at each of
the stages, and ad hoc development without a systematic approach run a risk
of losing sight of where a design decision has been taken; thereby closing off a
possible avenue of exploration for a solution. Second, this very set of tasks and
methods provides a set of useful tools that may help to solve particular problems,
or provide ideas for developing new solutions.

Two lines of research are now open for further work. First, more than one
case may be used for adaptation. For instance, one case may be used to provide
the structure of the result, whereas other cases are used to provide the required
vocabulary. The variety of methods of CBROnto allow different criteria to be
applied when retrieving cases for each of the possible purposes.

An important improvement that is envisaged is the incorporation of an on-
tology for the terms of the language being employed. As the reader may have

% not just to mouth or burning violets // will pass, but you and all of it as well // to
girl, shelter, dirt, to gloom, to snake.



noticed, the example presented in the paper has been carefully chosen to exem-
plify the available mechanisms, and, of course, not every query would result in
a meaningful poem with the right metric. Having a representation of the mean-
ings of words as well as the other information already in use in the system would
present several important advantages: 1) The ontology may provide the infor-
mation needed to modify the structure selectively, for instance by replacing a
masculine singular noun with a feminine singular noun if they refer to the same
concept; 2) During retrieval a semantic description for words introduces the pos-
sibility of recovering cases where a similar meaning is conveyed with completely
different syntactic constructions; 3) Additionally, it could act as a mechanism for
extracting from particular cases the relevant relations between case description
and case solution, to be used in selecting an adequate vocabulary.

References

1. A. Aamodt and E. Plaza. Case-based reasoning: Foundational issues, methodolog-
ical variations, and system approaches. AI Communications, 7(i), 1994.

2. B. Diaz-Agudo and P. A. Gonzélez-Calero. An architecture for knowledge intensive
CBR systems. In E. Blanzieri and L. Portinale, editors, Advances in Case-Based
Reasoning — (EWCBR’00). Springer-Verlag, Berlin Heidelberg New York, 2000.

3. B. Diaz-Agudo and P. A. Gonzélez-Calero. Classification based retrieval using
formal concept analysis. In Procs. of the (ICCBR 2001). Springer-Verlag, 2001.

4. B. Diaz-Agudo and P. A. Gonzdlez-Calero. A declarative similarity framework for
knowledge intensive CBR. In Procs. of the (ICCBR 2001). Springer-Verlag, 2001.

5. B. Diaz-Agudo and P. A. Gonzélez-Calero. CBROnto: a task/method ontology for
CBR. In CBR Track (FLAIRS) accepted to be published. 2002.

6. P. Gervas. Wasp: Evaluation of different strategies for the automatic generation of
spanish verse. In Proceedings of the AISB-00 Symposium on Creative & Cultural
Aspects of AL pages 93-100, 2000.

7. P. Gervés. An expert system for the composition of formal Spanish poetry. Journal
of Knowledge-Based Systems, 14(3-4):181-188, 2001.

8. P. A. Gonzdlez-Calero, M. Gémez-Albarrdn, and B. Diaz-Agudo. A substitution-
based adaptation model. In Challenges for Case-Based Reasoning - Proc. of the
ICCBR’99 Workshops. University of Kaiserslautern, 1999.

9. D. B. Leake, A. Kinley, and D. C. Wilson. Acquiring case adaptation knowledge: A
hybrid approach. In Proceedings of the thirteenth National Conference on Artificial
Intelligence, pages 684-689, Menlo Park, CA, 1996. AAAI Press.

10. R. Mac Gregor and R. Bates. The loom knowledge representation language. ISI
Reprint Series ISI/RS-87-188, University of Southern California, 1987.

11. J. McDermott. Preliminary steps towards a taxonomy of problem-solving meth-
ods. In S. Marcus, editor, Automnating Knowledge Acquisition for Knowledge-Based
Systems. Kluwer Academic Publishers, Boston, 1988.

12. T. Schreiber, B. J. Wielinga, J. M. Akkermans, W. V. de Velde, and R. de Hoog.
CommonKADS: A comprehensive methodology for KBS development. IEEE Ex-
pert, 9(6), 1994.

13. L. Steels. Components of expertise. AI Magazine, 11(2):29-49, 1990.

14. G. Van Heijst, A. Schreiber, and B. Wielinga. Using explicit ontologies in knowl-
edge based systems development. International Journal of Human and Computer
Studies, 46(2/3), 1997.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
    /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
    /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


