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Abstract 

In this paper we present a generic model for human interaction in virtual environ-
ments and the design of a software component that has been built according to this 
model for its use in the Maevif platform for Intelligent Virtual Environments for 
Education and Training. We present the motivations and the main objectives and 
we detail the key design decisions and the way in which they have been realized in 
an object-oriented approach based on design patterns. Improved adaptability and 
extensibility are the main properties of the resulting interaction module.  

Introduction 

The real world is complex and the approaches to its 3D graphical representation 
are more and more detailed and accurate, but visual representation is only one part 
of the problem. Additionally, we need to provide the user with an interaction 
model which is, just like the graphical representation, as realistic as possible. This 
interaction model should go beyond basic actions like move or touch, dealing with 
the complex interactions that could take place in the real world; those in which a 
person moves and manipulates objects in a concrete order to achieve a certain 
goal. 
The main objective of our work is the design of a software model of complex hu-
man interaction in virtual environments. Some requirements were considered es-
sential for our design:  

• Scalability: the model must be applicable and easy to use for simple as well as 
for complex interactions. 

• Extensibility: the model must allow easily expanding it and making changes in 
some parts of the design not affecting the others. This is one of the most impor-
tant things we had in mind when creating the model because it will be probably 
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expanded several times along its life time (to include new kinds of interactions 
or devices). 

• Ease of integration: although the design is focused in a concrete platform that 
has fostered its design and implementation, it must be abstract enough to be 
easily integrated into other platforms. The overall goal is to design a generic 
model for human interaction in virtual environments, and the particular one, to 
implement and integrate it as a part of the MAEVIF platform. 

MAEVIF is a platform for the development of education and training systems 
based on virtual environments [De Antonio, 2005], [Méndez, 2005]. It is divided 
into two parts: 

• Agent-based intelligent tutoring subsystem (ABITS): this is the central part 
of the platform. It is composed of a group of software agents that collaborate 
for teaching and training. Each agent is focused in a particular topic of the 
teaching process: tutoring actions, student tracking, learning objectives... 

• Graphics and interaction subsystem (GIS): this is the program that runs in 
the users' terminals. Its purpose is to bring the user a three-dimensional repre-
sentation of the virtual world and to provide them with the possibility to inte-
ract with the environment using the devices available to them. 

The agents in ABITS must share and analyze information about the actions that 
the students perform in the virtual environment. These actions must be assessed 
and evaluated to determine if the learning objectives are being achieved or not. 
This knowledge about the actions performed by the students is abstract in the 
sense that generally it does not matter how the user has effectively executed them 
(for instance, it may be important to know that the student opened the door, but 
not if he pressed the handle with his hand or if he pushed the door with his shoul-
der). Consequently, there is a need for an abstraction process that transforms the 
interactions that the user performs in the virtual world into the final actions that 
are important to the teaching process. 
There could also be restrictions associated to the way actions can be performed. 
For instance, there could be actions that require a group of simple interactions to 
be conducted in a concrete order.  Following the previous example, opening the 
door using the handle is composed of two elemental interactions: put the hand on 
the handle and press down the handle. Consequently, actions will be made up of 
groups of simple interactions with ordering constraints. 
Additionally, nowadays there are a great variety of interaction devices that can be 
used in VR environments, ranging from simple ones such as keyboards, joysticks 
and mouses, to immersive VR devices, such as data-gloves, haptic devices, track-
ing systems and caves. The interaction model must not depend on the devices 
available in a particular execution environment, that is, it should support any kind 
of peripheral connected to the client's computer to allow the user to perform ac-
tions in the virtual world. Using the previous example of "user A opens door X", 
the movement of his hand can be detected by a tracking system, and then he can 
press the handle by clicking a button or by doing a gesture with his real hand 
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(which can be detected and interpreted by a data-glove or by a system of digital 
video cameras). Therefore, the interaction model should offer another abstraction 
from the concrete devices being used to the interaction events that are meaningful 
for the system. 

Related work 

Trying to separate interaction devices control from VR applications is a problem 
that has been addressed in quite a lot of publications, such as [Chen, 2002]. How-
ever, as in the cited work, it is usual that ad-hoc solutions are designed, so that the 
same problem has to be solved now and again every time a new system is built. 
There are several systems that have addressed the same problem described in this 
paper. One of the most popular is the VR Juggler suite [Bierbaum, 2001], and 
more specifically one of its modules called Gadgeteer [Gadgeteer, 2007]. This 
module acts as a hardware device management system. It contains a dynamically 
extensible Input Manager that treats devices in terms of abstract concepts such as 
positional, digital or gesture. Although designed to be modifiable, it is thought to 
be used together with the rest of the VR Juggler suite, which makes it unsuitable 
in cases where other VR platforms are preferred. 
Other solutions include MR Toolkit [Shaw, 1993] and VRPN [Taylor, 2001]. Both 
are designed to support the transmission of peripheral data via packets on a net-
work. This way, input devices can be moved to different machines or replaced 
with different devices (even at runtime) without requiring any changes to the 
source code of the applications that use them. CIDA [Kelner, 2006] is a plug-in 
based input devices management platform that aims to abstract the type of the de-
vice used. According to the authors, the plug-in mechanism allows an easier addi-
tion of new devices. 
Other applications, such as the ones described in [Blach, 1998], [Kessler, 2000] 
also provide a library or a framework to develop device independent VEs. As in 
the case of VR Juggler, it appears that the whole bundle is needed in order to sup-
port different kinds of devices, while in the current work, given its layered struc-
ture, the Devices Level can be used separate from the rest. 
There is another kind of tools which mainly consist of libraries that are best suited 
to interact with specific framework, as in the case of CAVELib and CAVE or 
EQUIP and MASSIVE-3 [Greenhalgh, 2001]. Although they may support a wide 
variety of devices, the fact that they are mainly crafted to work with a specific 
platform makes them less suitable for extensive use. 
Finally, some approaches make use of unusual interaction devices such us the 
ones described in [Vinayagamoorthy, 2004], where eye gaze is used as the main 
interaction technique. Although using an appropriate abstraction it should be easi-
ly done, it is still necessary to experiment how this kind of interaction can be inte-
grated. 
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General design of the Interaction Module 

Abstraction layer 

Following the requirements and considerations presented in the previous sec-
tion, our interaction model design provides an abstraction layer made up of three 
different levels: 

• abstract actions that the ABITS can understand (we will call these operators). 
Some example operators are give something to someone, take something some-
where, activate some object, establish a relationship between two objects... 

• basic interactions (we will call these behaviors). Example behaviors are touch, 
grab, release, push... Behaviors can be grouped to define operators. 

• interaction devices that can be used to perform the basic interactions. We will 
call device to any process that can collect input from the user. It can be imple-
mented with a physical peripheral or some other software elements like a menu, 
a voice recognition system, a pseudo-device like a remote administration con-
sole, or a collision detector active in the 3D graphics engine. In short, it can be 
anything that launches events that can be considered as user input. 

The separation between the three levels provides an extraordinary flexibility to the 
system, allowing the developer to reuse existing behaviors and/or operators and 
making easier the design of new ones. The model also allows us to associate any 
existing or future device to any behavior. This is fundamental because of the great 
amount of different peripherals that could be alternatively used in the system. Fur-
thermore, we could use various devices at the same time to generate the same be-
havior, which could be useful under some circumstances. This design brings us the 
possibility to expand any of the levels without making changes to the others. 

World objects representation 

Every object in the virtual world is known as an entity. This concept also includes 
the parts of an object or avatar representing the user: body, arms, head, etc. 
An entity is any virtual object that has the following characteristics: 

• a three-dimensional representation. Commonly known as a model in 3D terms. 
• a collection of attributes: 3D coordinates and orientation, name, parent and 

children entities... 
• behaviors that indicate what can be done with the object, and what the object 

can do with its environment (other entities). 
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This representation of objects comes from the design of the MAEVIF GIS, and 
has been adopted because of its power and ability to be easily used and expanded. 
An entity as it is defined in the GIS can be expanded with additional attributes and 
methods by the modules connected to the GIS (our interaction module is a module 
of the GIS). Only a few entities will be managed by the interaction module, name-
ly those representing the parts of the user body that he can use to interact with the 
world: fingers and hands for instance. The connection of operators, via behaviors, 
to these avatar entities will make it possible for the user to interact with other enti-
ties of the virtual world. 
We have defined three main software object classes representing the actions ex-
ecuted by the user, in three levels of abstraction: Operator, Behavior, and De-
vice. The additional Entity class, besides the properties related to interaction, has 
information about the behaviors that the entity can launch. Two manager classes 
will store and keep under control the instances of the relevant classes: Opera-
torsManager and DevicesManager. 

Adaptability and Extensibility Mechanisms 

In order to enforce the adaptability of the interaction module, we need to be able 
to create different types of instances of these classes (the ones which are relevant 
for a given virtual environment and hardware setting) and to establish relation-
ships between them with a minimum coupling. We also want to maximize the ex-
tensibility of the module, minimizing the effort required to add new behaviors or 
devices that were not considered in the initial design. 
For instance, we want behaviors to maintain relationships with all the devices that 
can be used to launch it. A specific behavior such as push could be launched using 
a mouse, keyboard, data-glove... We would need to define different subclasses of 
the Device class for different types of devices, but we do not want the behavior to 
know any details about the creation of device instances nor even be aware of the 
device types.  
The solution adopted is the definition of abstract factories that create the necessary 
objects based on external definition files provided to them. For example, if we 
need to create a device object, we only need to read the definition of that device 
and send it to the proper abstract factory, which in turn will make use of the con-
crete factory available for the device's subclass. In this way, the only class that 
will have knowledge about the relevant classes and their relationships is the confi-
guration manager.  
The configuration manager is an essential part of the interaction model. It deals 
with a lot of configuration settings, most of them detailing the relevant entities and 
devices in a given virtual environment and hardware setting. But it also allows for 
an easy extension of the interaction module with new behaviors and device types. 
The latter extensions will require, in addition to new configuration settings, the de-
finition of new subclasses as an extension of the base classes in the framework, 
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and the definition of new concrete factories, but without any modification of the 
existing code except for the configuration manager. 
 

 
Fig. 1. Use of abstract factories to create the devices associated to one behavior  

The initialization method, responsible for the creation of all the required objects is 
as follows: 

• registration of subclasses: the configuration manager registers all the sub-
classes he knows in the proper abstract factories, establishing the relationship 
with their corresponding concrete factories. New subclasses added in the future 
will require the modification of this registration process. 

• definitions of objects: the configuration manager creates a definition object 
for each subclass of the system from the configuration settings it loads. 

• creation of an object: 

– asking for a definition: when one object (for example the behavior push) 
needs to create and establish a relationship with an instance of another 
class (for example a certain mouse device), it asks the configuration man-
ager for the corresponding definition. 

– calling the abstract factory: the object sends the definition to the proper 
abstract factory. 

– delegating to concrete factory: the abstract factory locates the concrete 
factory corresponding to the class, as it was previously registered, and 
sends the definition to it. 

– creating the object: Finally, the concrete factory creates the object and re-
turns it back to the object that initially requested it. 

Some programming languages permit doing this by using reflection and dynamic 
loading of new classes, but we have decided to use a more general mechanism that 
allows us to use any programming language. Note that the current implementation 
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of the module is in C++ which has not reflection support and in which dynamic 
loading of new symbols at runtime is platform dependent. 
 

 
Fig. 2. Example of a class in the design with its own concrete factory, definition and data. Using 
this structure in the class and registering it in the proper abstract factory (in the configuration 
manager initialization) will make it's creation accessible from any other class of the design. 

Devices design 

We have defined devices as an abstraction of any software library that can collect 
user input. This includes peripheral devices, voice recognition libraries and any 
other software that we want to use to launch behaviors. The main purpose of de-
vices is to return data based on user input.  In order for a new device type to be 
considered by the interaction module, the abstract method getData() must be im-
plemented in the new device subclass. The separation between behaviors and de-
vices also requires that all devices return the same class of data. This is achieved 
by another abstraction: DeviceData. 
We have defined two steps for the process of obtaining data from the device: 

• poll: device objects are periodically polled to update its internal state with new 
data available in the underlying software. The devices manager calls the getDa-
ta() method of each device, which is implemented in the concrete subclass. 

• notify: devices notify associated behaviors only when new data is available. 

The first step is executed several times per second (every frame in most of the 
cases). Most of the device drivers use polling to obtain new data from the peri-
pheral. When the underlying device software library provides notification mechan-
isms, polling can be ignored. It is possible that in most polls no updated data is 
available. This is why we have decided to introduce the second step: to prevent the 
system from overloading behaviors with messages containing redundant data. The 
second step ensures that only messages containing new data are sent from devices 
to behaviors. 
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To achieve this goal, a device makes two uses of the observer pattern: first, as an 
observer in polls; and second, if there is new data available in any poll, as a sub-
ject to notify the registered behaviors. 

 

 
Fig. 3. Use of the observer design pattern by the device class. There is also an example of a spe-
cial device that notifies about collisions between entities detected in the 3D engine. 

Behaviors design 

A behavior is any basic interaction that the user is allowed to perform in the vir-
tual environment. A group of behaviors, in a concrete order, can launch an opera-
tor and so let the simulation system know what the user is doing in the virtual en-
vironment. 
As explained in previous sections, a behavior can have a group of devices asso-
ciated to it. This provides us the possibility to launch it in various different ways. 
The problem here is that some devices will return a vector of real numbers, others 
a pair of entities (for instance a pseudo-device that detects collisions in the 3D en-
gine), or even a sentence uttered by the user and recognized by a voice software 
library. 
When a device notifies a behavior that it has new data and sends the data, the 
processing of the data to determine if the launching requirements for the behavior 
are met would require the behavior to have knowledge of the type of data and the 
way to process it, adding a dependency of the behavior on the device. Another op-
tion would be having the device itself make that decision, and not simply returning 
the data, but then we would have the same problem reversed: a dependency of the 
device on the behavior; if we created a new behavior, we should modify the exist-
ing device to introduce the knowledge related to the new behavior and its activa-
tion.  
To avoid any dependency we have introduced an external evaluator class. There 
will be an evaluator specialized in each behavior-device association. For example, 
let’s suppose we have a touch behavior and a device for joysticks that returns a 
float. When the user moves the joystick axis the position is represented in the in-
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terval [-1.0..1.0] and when the user pushes a joystick button the data shows if it is 
pressed or not (-1.0 not pressed, 1.0 pressed). Let’s suppose that we already have 
an evaluator that processes this kind of data and determines whether or not the be-
havior must be launched. Now we introduce a voice recognition library as a de-
vice, returning strings like touch object. It’s obvious that the existing evaluator 
does not work with the new kind of data, but the only thing we must do is to create 
a new evaluator for each behavior we want to be activated by the new device. 
With this design we keep devices and behaviors clearly separated, allowing new 
additions to the system with the minimum changes to existing classes. 

 

 
Fig. 4. Behavior class with its two uses of the observer design pattern: it receives events from the 
devices associated, and it sends events to the behavior manager. 

Operators design 

An operator represents an abstract interaction of the user with the virtual envi-
ronment, such as take something or give something to someone. These operators 
are independent from initiator and targets, as the action is always the same but 
with different arguments. Therefore, there is only one instance of each operator 
class.  Furthermore, an operator can be made of several behaviors executed in a 
concrete order. Thus, we have introduced a concept similar to the evaluator that 
here is called detector. A detector is an external class that the operator uses to 
know when it has been activated. The detector will process behaviors executed by 
the user and it will launch the operator when the requirements are meet. 
We have designed detector as an abstract class to avoid restricting its internal de-
sign. Different types of detectors can be implemented if the existing ones are too 
not enough for new operators to be created. For a detector to do its job, it is re-
quired to detect the creation of new behaviors. Moreover, whenever a behavior is 
executed by the user, all the detectors depending on it must know about this event. 
These two situations have been solved with two applications of the observer pat-
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tern (see the figure 5}): first, when a behavior's concrete factory creates a new ob-
ject it notifies the behaviors manager so that it can notify this event to all the de-
tectors; second, after a behavior has been created and the detectors are notified, if 
the behavior is relevant to the operator's requirements, it will be observed so that 
when it is launched by the user, the detector is notified of this event. 

 

 
Fig. 5. Operator design with its detector and activator 

Our detector class implements a finite state automaton that tracks the behaviors 
launched by the user and determines when the requirements of the operator are 
met. Figure 6 shows an example: the take something operator's detector has been 
implemented as a finite state automaton with three states. The requirement to pass 
from the initial state to the intermediate one is the touch object behavior. Then, the 
transition from this intermediate state to the final one is allowed by the take beha-
vior (with the meaning of close hand). In the final state we can be sure that the us-
er wants to launch the operator take something as he has touched an object and 
closed his hand (in this order). 

 

 
Fig. 6. Operator's detector designed as a finite state automaton. 

This design is very simple and allows us to completely define the specific automa-
ta in the configuration file. For more complex operators, if automata are not po-
werful enough, it will be possible and easy to define a new kind of detector (for 
instance based on a Petri net) directly usable by the system. 
We have created an automata template library in such a way that it is easy for the 
user to completely define a new automaton just by using configuration settings 
(the system will create dynamically the automata at runtime). The assignment of a 
detector object to a particular operator is done at runtime. 
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The activation of the operator by the detector when the activation requirements are 
met is realized by a message from the detector to the operator containing all the 
arguments related to the abstract action that the operator represents. For example, 
in the take something operator this message must contain the actor and the object. 
In the MAEVIF platform, the process of activating an operator implies the crea-
tion of a JSON message which is sent to the ABITS, but we anticipate that in other 
uses of this interaction module the consequence might be different. This led us to 
design the operator in such a way that it uses an external class to do the real acti-
vation of the operator. In our case, this activation object will be a network client 
that will marshal the operator's activation arguments in a JSON string that will be 
sent across the network to the agents platform. Figure 1.7 summarizes the data 
flow involved in the process of collecting user input data and analyzing it. 

 

 
Fig. 7. When a device has new data based on user input it activates the behaviors associated and 
they process the data using the corresponding evaluator object. If the device data meets the re-
quirements for activating the user behavior, the data flow will reach the top level of operators in 
which there will be more processing to determine whether or not an operator must be activated. 

Conclusions 

Our main goal when designing our interaction model was to create a powerful but 
at the same time simple design, and an easily extensible module. This paper 
presents the resulting design detailing the rationale for the most important design 
decisions. The flexibility of the designed interaction module allows for an easy 
generation of alternative user interfaces, based on different combinations of inte-
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raction devices, and perform tests to select the most appropriate one(s) for the 
task(s). Together with adaptability and extensibility, performance is a critical fac-
tor that should not be forgotten. Our design of the interaction module is meant to 
perform real-time processing of interaction data in virtual environments. The most 
intensive processing will be required by the user movement behavior evaluators, 
because the user will probably update those peripherals every frame. Other beha-
viors will be associated to asynchronous events too, but those events (take, push, 
touch) will be less frequent than the previous ones. In order to improve perfor-
mance we have minimized the number of messages between objects. 
The designed module has already been implemented and some preliminary tests 
are being conducted, with satisfactory results regarding real-time performance and 
memory use, but extensive testing is still required. Moreover, this interaction 
module has been integrated in the MAEVIF platform, and we are currently work-
ing in the development of several test virtual environments to explore the possibil-
ities and constraints of the module. There is also the need for additional specializa-
tions of the design targeted to different types of interaction devices. The 
customization of the model for its use in a specific system involves just declaring 
the set of available devices, and defining the desired behaviors and operators, in a 
first level of abstraction, and then configuring the settings of the devices for each 
specific user terminal. 
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