Afanasyev: A collaborative architectural model for
automatic story generation

Eugenio Concepcién and Pablo Gervas and Gonzalo Méndez'

Abstract. The present article focuses on detailing the characteris-
tics of Afanasyev, an architectural framework for the construction of
story generation systems through replaceable services. The basic idea
behind this approach is the development of a collaborative environ-
ment for generating stories. This entails the inclusion of a common
representation model to allow the interoperation between different
story generation systems as a base for a collaborative environment to
run an enhanced process of literary creation. In addition to this ob-
jective, this model aims at the development of a story representation
formalism for creating a common knowledge base that can be fed in
the future with the outcomes of new storytelling systems, without the
need to adapt it to every system-specific representation model.

1 INTRODUCTION

Automatic story generation is a long-standing research field in the
area of Computational Creativity (CC), which pursues the develop-
ment of creative behaviour in machines [42]. A story generator al-
gorithm (SGA) refers to a computational procedure resulting in an
artefact that can be considered a story [19]. In other words, a story
generation system is a computational system designed to tell stories.
So, the terms story generation system and storytelling system can be
considered equivalent.

From an architectural point of view, many automatic story genera-
tion systems have been traditionally designed as monolithic systems.
This feature entails that a single application concentrates all the re-
quired functionality and assets. While this was a feasible solution
for the earlier systems, mainly designed for research purposes and a
limited-complexity functionality, nowadays it seems quite difficult to
host the ideally expectable storytelling capabilities with such model.
So, as the story generation systems are becoming more complex, they
are being designed in a much more modular way.

This paper introduces Afanasyev, a collaborative architectural
model for automatic story generation which relates to a service-
oriented architecture (SOA) [11, 36], and the microservices model
[6]. The SOA paradigm provides a convenient framework for orga-
nizing complex software systems. In addition, the main contribution
of the microservices architectural pattern to the service-based land-
scape is the development of highly distributed and decoupled appli-
cations. The application of this approach to the context of automatic
story generation, along with the concepts taken from the API econ-
omy model [18], would allow the storytelling systems to create new
functionalities and value.

This document is structured in four main blocks: a general review
of the existing storytelling systems, with a special emphasis on col-

1 Universidad Complutense de Madrid, Spain, email: econcepc@ucm.es,
pgervas@sip.ucm.es, gmendez @fdi.ucm.es

laborative story generation; a summarized statement of the problem;
a detailed description of the proposed solution; and a final part fo-
cused on discussing some specific aspects of the solution and the
conclusions.

2 BACKGROUND

The first story generation systems date back to the 1970s. The Auto-
matic Novel Writer [26] is considered the first storytelling system. It
generated murder stories in a weekend party setting. Its capabilities
were quite limited, so the generated stories had an identical structure
and the only variation came from the characters roles.

TALE-SPIN [32] was another of the earlier story generators. It was
a planning solver system that wrote up a story narrating the steps
performed by the characters for achieving their goals. TALE-SPIN
generated stories about the inhabitants of a forest taking a collection
of characters with their corresponding objectives as inputs. TALE-
SPIN found a solution for those characters goals, and wrote up a
story narrating the steps performed for achieving those goals.

Author [10] was the first story generator to include the author’s
goals as a part of the story generation process. Dehn considered that
stories were mainly the result of a plot conceived in author’s mind. In
such a way, Author intended to emulate the mind of a writer. Concep-
tually it was a planner but, unlike TALE-SPIN, it used the planning
to fulfill authorial goals instead of character goals.

Universe [28] was designed for generating the scripts of a TV soap
opera episodes in which a large cast of characters played out mul-
tiple, simultaneous, overlapping stories that could continue indefi-
nitely, without a closed end. Universe gave a special importance to
the creation of characters, in contrast with Dehn’s approach. It used
complex data structures for modelling characters, using as input both
predefined stereotypes and user-provided characterization.

Mexica [37] was developed as a computer model whose purpose
was studying the creative process. It generated short stories about
the early inhabitants of Mexico. Mexica was a pioneer in that it took
into account emotional links and tensions between the characters as
a means for driving and evaluating ongoing stories.

Fabulist [38] is a complete architecture for automatic story gener-
ation and presentation. Fabulist combines an author-centric approach
together with a representation of characters intentionality, and an
open-world planning for maximizing the quality of the stories.

Curveship [34] was a system for interactive fiction in which the
user controls the main character of a story by introducing simple de-
scriptions of what it should do, and the system generates descriptions
of the outcomes of the character’s actions. Curveship’s storytelling
approach differs from other story generation systems in the sense
that it tells the story from different perspectives, without modifying

the plot. For example, it makes use of a wide variety of techniques
such as flashback, flash-forwards, interleaving of events from two
different time periods, telling events back to front.

Regardless of whether the construction of the story plots relied
on grammars [26], planning [32, 10, 28], or case-based reasoning
[41, 21], a good part of the mentioned storytelling systems fitted the
monolithic model. In addition to this approach, simulation-based sys-
tems [38, 34] were built mainly as distributed architectures. None of
the aforementioned generators combined capabilities from other sys-
tems, nor considered the collaboration with others.

Slant [35] can be considered a remarkable example of story-
telling systems working collaboratively for producing an enhanced
outcome. It is an architecture for creative story generation that in-
tegrates several components from different systems: Mexica [37],
Curveship [34] and Griot [24]. The latter is a collection of Com-
putational Creativity related systems. The core of Griot is Alloy, a
component which makes what its authors name “blending”’[22]. Con-
ceptual blending is an idea that comes from cognitive linguistics. It is
a model of creative thinking in which two concepts can be integrated
to form a new one. Namely, the thrust of this approach is the integra-
tion of different concepts in order to produce some creative results
—for example, metaphors.

In a wider context, still within the computational creativity area,
it is noteworthy the architecture proposed by Veale [42] for creative
Web services. In an effort to accomplish both the academic and the
industry needs, he proposes a solution for enhancing computational
creativity systems by introducing an architectural model which cat-
egorizes the services according to their function in the application
structure.

After the prior analysis of a representative subset of the existing
storytelling systems, it seems quite clear that every system has been
designed according to certain operational expectations that they are
able to accomplish, but they difficultly can produce stories beyond
their predefined target model. Hence, it is quite uncommon to find a
single story generation system producing stories that combine differ-
ent narrative rhythms or that deal with diverse motifs in the thematic
aspect.

3 STATEMENT OF THE PROBLEM

What makes a story captivating? The basic elements of a story have
been largely analysed by classic Narratology [3, 2, 31]. The plot is
an essential element in a story, but so are the characters depiction,
the narrative discourse, the rhythm, the emotional arc and many oth-
ers. All these elements produce an effect in the people watching a
play or a film, reading a novel or listening to a narrator. The wise
arrangement of all these components, adapting the length of each
scene to the most convenient one, varying the speech and description
passages, choosing the right timing for the key events and remaining
faithful to the theme, help to create movement, tension and emotional
value in the development of the story.

Despite the efforts made in the field of automatic story generation,
the stories written by humans are considerably more complex than
those generated by computational systems. Consider as an example
any classic novel: they contain a main plot, several subplots, every
chapter can be focused on a different theme, there are changes in the
rhythm of the narration, there are passages that focus on a particular
character and ignore the rest, and many other features that help to
keep the readers attention in the narration. The existing storytelling
systems are capable of creating a single-themed story, with a single
narrative structure and a specific rhythm.

Coupled with the intrinsic limitations of the generation model, the
monolithic architecture of many existing systems introduces an ad-
ditional limiting factor.

Considering the collaboration between different storytelling sys-
tems as a simple way of generating more natural stories, it seems ap-
propriate that a solution could involve using different systems, gen-
erating different types of content according to their capabilities. Due
to the fact that a monolithic design hinders the collaboration with
other systems, this paper considers the use of several systems work-
ing collaboratively for achieving the generation of richer and more
complex stories by providing a service-based framework for auto-
matic storytelling. This approach would allow to combine different
services from different story generation models —or systems, so the
outcome would be closer to the diversity of narrative resources that
characterize the stories created by humans.

4 PROPOSED SOLUTION

Many of the existing systems have been designed as monoliths,
which make the collaboration between them a really complex chal-
lenge. This happens because almost every system duplicates a con-
siderable part of the common storytelling functions. If every sto-
rytelling system broke its architecture into finer-grain components,
such as microservices, these components could be used separately
and evolve independently.

The basic idea of the proposed solution can be seen as one of those
toddler toys in which they have to classify different pieces by match-
ing the shapes and drop every block through the sorter. In this case,
the model supports the use of different types of automatic storytelling
services, as long as they can implement every required interface.

Afanasyev is basically a collection of microservices orchestrated
by a high-level service. The overall ecosystem can be considered a
small storytelling API Economy [18]. Each service exposes their ca-
pabilities as REST-based API [13] and it understands and generates
JSON messages. Due to the fact that the inner logic of any microser-
vice can come from a different storytelling system, its interface must
be adapted to this new purpose. This is the reason why Afanasyev
includes the definition of the common REST interfaces provided by
the services and leaves to every particular system the details of the
implementation. This approach introduces several benefits. First of
all, the whole architecture is highly decoupled. This means that ev-
ery service is implemented and deployed separately, and it can evolve
independently from the others. Another benefit of this model is that
it can be extended in the future, by adding new microservices to the
ecosystem without affecting the others. And finally, a very important
feature, the ease of integrating a new system. To add a new story-
telling system to the ecosystem, simply entails to implement at least
one of the microservices interface, and registering it in order to be
considered by the Story Director during the generation process.

From a certain point of view, the operation of Afanasyev may
evoke the idea behind Hopscotch, a novel by Cortdzar[9], whose
chapters can be read in different order, giving rise to a good number
of differing valid interpretations of the resulting plot. In this case, the
architecture provides the structure and function, which must be cov-
ered by the different microservices that implement each API. This
allows to use parts coming from different generating systems in a
combined way, or to reconstruct a complete generator according to
the architecture provided by the framework. An early approach to
this model was proposed as part of a wider API-based collaborative
environment [4].

The development of Afanasyev entails two main tasks: the defini-

tion of a shared knowledge representation model and the design of a
microservice-based architectural environment. Both are addressed in
the following sections.

4.1 Common knowledge representation model

In order to allow the combined operation, the microservices of the
framework require a common representation model for stories. The
knowledge required to generate stories depends heavily on a num-
ber of factors. One of these key factors is the system architecture.
The components that participate in the generation process condition
the structure of the knowledge. For example, in the case of story-
telling systems built over planners, it is necessary to keep knowledge
concerning states, preconditions, actions, effects of the actions, etc.
Grammar-based story generators require a complete representation
of the applicable rules for creating their stories. Simulation-based
storytelling requires a detailed typification of the characters and their
relationships. On the other hand, there is a common element for ev-
ery storytelling system that can be interchanged: the story, which is
the end product of the generation process.

The proposed representation model [5] focuses on the knowledge
that is directly related to the story, instead of that related to the gen-
eration process, which would be hard to export between different
systems. This model is strongly influenced by the components of nar-
rative identified in the classic Narratology [3, 2, 31]. These concepts
and structure are enhanced by various storytelling-related computa-
tional concerns.

The resulting representation model is summarized in Figure 1.

The model has been designed as a hierarchical structure, in which
the root concept is the story. Most of the leafs of this tree-like struc-
ture are asserts representing a piece of knowledge. These asserts
are expressed by means of sentences in a Controlled Natural Lan-
guage (CNL) [39]. The use of a CNL for representing knowledge
in storytelling systems has been proposed by the authors in earlier
papers [7, 8]. The main advantage of using a CNL is that the con-
cepts referred in the asserts can be expressed by domain experts in
the knowledge base and then they can be translated to the variety of
formal representations used by the various services. This feature al-
lows the definition of rules in a system-agnostic language, useful not
only for expressing the different concepts involved in the story, but
also for exchanging these knowledge resources across the different
storytelling services.

A story represents what both intuitively and narratologically can
be considered a story, that is, a narration of the actions performed
by the characters and the events happening in a setting. A story is
composed by two main elements: the plot and the space.

The plot is represented as a sequence of scenes. A scene is concep-
tually related to the division of a play, that represents a single episode
inside the plot. It is clearly conditioned by the time division, which
means that it is a sequence of events that happen during a time frame.
From a spatial point of view, it is also constrained to take place in a
single spatial frame —considering the spatial frame definition men-
tioned before. So, the scene is composed by a sequence of events,
that can be actions or happenings. An action is an act performed by
one or more characters in the story, generating consequences. The re-
sulting consequences of every action are expressed as a modification
in the global state of the space —considering it as the whole setting
and the existents. A happening is an event that happens in the plot,
as an accident or as a consequence of a prior action or happening. A
happening can be natural —it rains— or artificial —a car accident.
Regardless of the type of event, both are characterized by their im-

Events

Happening

State

Cultural

Physical

Beings

Behaviour

Features

Cultural
Physical

Objects

Features

Physical

Characters

Features

Cultural

Physical

Psychological

Relationships

Figure 1. Stories common representation model.

pact in the story world. This is represented as a pair of states: the
previous state and the later state. Each state is represented by a set of
asserts, expressed in a CNL.

The space encompasses the whole universe in which the plot is
taking place and also all the places, beings and objects of which
existence the characters are aware of, regardless of these elements
are real or fictitious. The representation model considers that the
space is composed by the setting and the existents. The existents
are the whole set of actors that take a part in the story. They can
be characters, living beings —an animal—, and an object in the set-
ting. The two last types are mainly defined by their physical fea-
tures and their cultural significance in the story. The characters are
the most relevant, and also the most complex to represent, elements

in the story. The proposed model considers not only their physi-
cal, psychological and social features, but also their cognitive-related
characteristics. The cognition of the characters is represented in a
very detailed manner due to its importance for ensuring story con-
sistency and characters liability. The aspects considered have been
chosen after analysing those used by the existing storytelling sys-
tems [40, 30, 10, 29, 33, 37] and theoretical studies about Narrative
[2, 31]. So, the representation of cognition includes the following
facets:

e Goals: The goals are the results or achievements toward which
the character effort is directed. The model considers two types of
goals: conscious and unconscious. In the first case, the character
is aware of them, in the second, they drive the character’s actions,
but he/she is not aware of them.

e Intentions: The intentions refer to the general plan that every char-
acter has, and the drive for his/her actions.

o Knowledge: Despite the characters act and interact in the same
space, every single character could have different levels of knowl-
edge concerning it. That means that the characters are not consid-
ered to be omniscient. This knowledge can evolve over the time, so
characters can be acquiring or discarding knowledge as the story
develops.

e Memories: Unlike the general knowledge, the memories refer to
some past situations that have relevance in the story. For example,
a memory can be referred to a past scene in which the character
took part.

e Beliefs: The beliefs are a very subjective part of every character’s
cognition. They refer to facts about the world which the character
considers as axioms, regardless of they are true. They can be part
of the character’s cultural or religious code, or simply originate in
a particular misconception of the world.

e Dreams: The dreams represent the unconscious aspirations of the
character. He/she may not be aware of them, but they can operate
at a subconscious level and inspire his/her intentions.

e Fantasies: The fantasies are product of characters’ imagination.
They are beliefs or notions based on no solid foundation, a fact
which the character is perfectly aware of. They represent aspira-
tions that the character considers unreachable, but he/she enjoys
thinking about them.

e Emotions: The emotions are related to the feelings of the charac-
ter. They are usually influenced by the relationships that the char-
acter establishes with the others, and the evolution of them during
the story.

Another relevant element of character’s representation is the func-
tion. The idea is to provide a way of representing the main two
approaches concerning the role of the characters in the plot. There
are models that consider the plot as the result of characters interac-
tions in a simulated story world, but there is another line of thought
which considers that characters are subordinate to the narrative ac-
tion. There are storytelling systems [20] that describe characters in
terms of a structure based on their roles in the plot. Hence, the func-
tion tag refers to this approach and provides a way for linking the
functional role of the character to the underlying structure of the
story.

The setting is a combination of a set of physical —or virtual—
locations in which the action of the story takes place, and the set of
cultural and physical rules that govern the story world. The locations
can be considered the scenario in which every scene that composes
the plot takes place. So, as shown in the model, every scene links to
its corresponding location.

Episode
Generator
m I I I I -

Knowledge

Discourse Sentence Linguistic
planner planner realization

Draft

Repository

Figure 2. Architecture of Afanasyev.

4.2 Architecture of Afanasyev

The architecture of Afanasyev is based on a set of key microservices
that provide the essential capabilities for story generation. Every mi-
croservice publishes an interface according to the REST model [13].
The joint operation of the microservices ecosystem is managed by
the Story Director, which acts as an orchestrator of the services ac-
tivity. It will request the APIs of the different services according to
the steps of the generation process. This process will proceed iter-
atively, generating drafts that will be refined in each pass, until the
established criteria for story completeness are met.

The main microservices in Afanasyev, depicted in Figure 2, are
the following:

Story Director

Plot Generator

Episode Generator

Filter Manager

Draft Reflector

Discourse generation services (Discourse Planner, Sentence Plan-
ner and Linguistic Realization)

The key component of this framework is the Story Director, the
inner architecture of which is depicted in Figure 3. It is strongly in-
fluenced by the Domain-Driven Design (DDD) principles [12].

The distinction between Application services and Domain services
is precisely due to DDD. An application service has a clearly distin-
guishing role: it constitutes the environment for executing the do-
main logic, orchestrating the calls to the other components of the ar-
chitecture: domain services, gateways and repositories. Domain ser-
vices are only focused on performing domain logic which does not
involve managing entities (Repositories) or calling external compo-
nents (Gateways). So, they can rather be seen as components that
provide procedural functionalities.

The Story Director has a clearly defined REST interface. The tech-
nical interface layer provides the logic necessary for implementing
the communication-related requirements, allowing the isolation of

Resource access layer

Application services

q q o PEIE]
Domain services Repositories
mapper

Figure 3. Story director architecture.

the remaining components from them. The resource access layer pro-
vides a uniform interface for accessing the stories managed by the
Story Director.

The repositories have been designed according to the Repository
pattern [14], which provides a convenient abstraction for managing
persisted objects. The inner database of the Story Director is an aux-
iliary store for persisting the life cycle of the ongoing drafts.

Persistence in Afanasyev is mainly composed by two stores: the
Draft Repository and the Knowledge Base. The Draft Repository
is a database that stores the ongoing drafts. The current imple-
mentation of this component is based on a NoSQL database[23]
(MongoDBJ[1]). The knowledge base has the task of preserving all
the knowledge related to concepts, relationships between concepts,
rules, etc. It is a knowledge base generated from the contributions of
the involved story generation systems. This model of knowledge syn-
dication allows to increase the shared set of concepts each time a new
system joins the ecosystem. Hence, every contributor performs an
initial load expressing its rules by means of a controlled natural lan-
guage expression. Namely, the current version counts on Attempto
Controlled English (ACE) for this representation[17][16][27]. The
use of a CNL for representing the knowledge allows the model to ab-
stract from the programmatic representation used by each particular
system, and to provide a greater robustness and consistency to the
system architecture.

The Plot Generator main task is generating the complete plot
structure. This includes the generation of the sequence of scenes that
constitute the plot, the preconditions and postconditions that con-
strain every scene, and the articulation of the story in a high level.

The Episode Generator is in charge of developing the details of
what happens in every scene of the plot. It must consider the pre-
conditions and the postconditions defined for the scene by the Plot
Generator, in order to create a scene detail that is consistent with
them.

The Filter Manager is a service devoted to filter the population of
generated drafts in order to select only the most promising stories, in
terms of narrative tension or suspense. It is a very convenient tool for
avoiding an explosion of irrelevant draft variants during the episode
generation.

The Draft Reflector inspects the drafts for deciding if they are
finished stories or if they must be improved in another iteration. For
example, it checks if all the scenes of the plot have been detailed.

Resource access layer

Figure 4. Marker microservices architecture.

From a technical point of view, the Plot Generator, the Episode
Generator, the Filter Manager, the Draft Reflector and the text
generation services are basically marker microservices, with a pre-
defined REST interface and a set of common architectural compo-
nents. They are expected to be implemented by the particular story
generation systems that collaborate in the generation process.

The internal architecture of these microservices, as Figure 4
shows, share partially the design of the Story Director. The com-
ponents directly related to the intercommunication has been struc-
tured in the same way. They have a common layer for REST contract,
with their corresponding technical interface, and the mandatory CNL
mapping components. In their case, the resource access layer acts as
an anticorruption layer[12] that isolates the inner logic of the service
from the common framework infrastructure.

4.3 System operation

Afanasyev operates iteratively. Firstly, it generates a draft that will be
completed by the various existing services in the architecture. The
Story Director acts as the central component, orchestrating the re-
quests to the different microservices. Table 1 summarizes the REST
operations related to each microservice. The first step is always per-
formed by the Plot Generator, which generates the basic structure of
the plot. This provides a first basis for the story, with the sequence of
scenes that make up the plot. Each scene is characterized by a previ-
ous state (precondition) and a later state (postcondition) of the world
in which the action takes place. Every state is a collection of state-
ments relating to the characters, living beings, and objects that exist
in the story. In addition, each scene is associated with a specific set-
ting. This setting is a reference to the list of existing settings defined
in the story space.

Once the first draft is generated, the Story Director will persist it in
the Draft Repository and then it will request the Episode Generator
to generate the detail of what happens in each scene. For this, the
Episode Generator receives as a parameter the draft, and the identifier
of the scene that it must develop. Again, in this process the previous
and final states of the scene are extremely important, since they will
provide information to the Episode Generator about what can and
can not happen in the scene. That is, the Episode Generator will only
generate solutions for the scene that are coherent with the previous
and final states, discarding the rest. The output will be a collection

Table 1. Afanasyev microservices operations summary.

Service Method | Input Output

Story Director POST Characters list, | Story
Pre/post spec

Plot Generator POST Characters list, | Draft

Pre/post spec

Episode Generator | PUT Episode UUID, | Draft
Draft
Filter Manager POST Episode UUID, | Episode curves
Draft
Draft Reflector POST Draft Draft Evaluation
Discourse planner POST Story Text (NLG)

2
I Plot Generator
3
5
Episode
4--6-- Generator
8
‘ 4 m I I I I
9
n
IO Draft Reflector
12
14 q q o
Discourse Sentence Linguistic
ELLEY & planner 7 realization

Story Director

Draft

Repository

Figure 5. Operation of Afanasyev.

of possible continuations of the story, namely, a collection of drafts.
Once again, every generated draft will be saved by the Story Director
in the Draft Repository.

In the next step, the Story Director will request the Filter Manager
to apply a sequence of filters on the generated drafts, and discard
those considered as not promising. The number of filters is variable
and they will always be applied in order, being the first the most im-
portant. Some of these filters can focus on aspects such as narrative
tension or suspense. They allow us to make the stories more inter-
esting by selecting those drafts that best fit the proposed parameters.
The Story Director will remove the discarded drafts from the Draft
Repository.

The final step in each iteration is provided by the Draft Reflector,
which analyzes each of the drafts in progress and decides if the story
has been completed, and therefore, stopping being a draft to become
a finished story. The last step for the finished story is to generate the
text in Natural Language. This task is performed by the discourse
generation services, that work sequentially: Discourse Planner - Sen-
tence Planner - Linguistic Realizer.

The whole operation of Afanasyev is summarized by Figure 5

The main advantage of this operation model is that the compo-
nents of the architecture are basically slots that can be fitted by differ-
ent services that follow different strategies. For example, the criteria

for story completeness depend totally on the implementation of the
Draft Reflector. Furthermore, the architecture admits the coexistence
of various draft reflecting services that can be called by the Story
Director according to higher order criteria. This feature provides a
wider variety of behaviours during system operation.

5 DISCUSSION

Unlike previous approaches to collaborative story generation [35],
Afanasyev is not geared towards the ad hoc integration of specific
pre-existing systems, but rather to provide a general service-oriented
framework that allows the construction of different storytelling sys-
tems by assembling components from various systems (or from only
one, in the simplest case).

From an architectural point of view, Slant consists of a black-
board architecture [25] and a shared XML based story representa-
tion, which allows different storytelling systems or components to
contribute to the story generation. This approach entails that every
contributing system can access a shared working draft and enrich it.
As part of the generation process, Slant provides mechanisms for se-
lecting the most convenient contents in every iteration and deciding
when to finish a ongoing story.

In contrast, in the service-based approach of Afanasyev, only the
Story Director manages directly the ongoing drafts. The rest of the
services can be invoked only according their interface and their oper-
ation is always orchestrated by the Story Director. This modulariza-
tion, derived from the use of a microservices architecture, is not the
only interesting feature. First of all, every service can be instantiated
several times, and even exhibit different behaviour according to its
configuration. For example, there can be several instances of the Plot
Generator service, each with a different inner implementation, and
the Story Director can request them to generate a draft in order to
have a wider variety of plots. The same applies to the Episode Gen-
erator and the Draft Reflector services. In an API ecosystem, differ-
ent versions of the same service can live together and be consumed
independently. So, it would be possible to have an Episode Gener-
ator instance implemented from certain storytelling system, and an-
other Episode Generator instance implemented from a different sto-
rytelling system.

Another interesting feature is that the architecture can be easily
extended. The operation of every microservice in Afanasyev is com-
pletely independent from the others. If we wish to introduce a new
microservice in the architecture, the only component that would re-
quire to be adapted would be the Story Director —in order to include
this new service in the generation process that the Story Director
manages.

Also, the Filter Manager service has been designed as an extensi-
ble sequence of filters that are applied in order to modify the draft
received as a parameter. These filters are related to the degree of
interest of the draft (for example, narrative tension and suspense).
Adding a new filter simply requires to register the service that imple-
ments it into the Filter Manager.

Due to the coexistence of rules from various systems, it is as-
sumed that there is no guarantee of consistency in the knowledge
base. Achieving a full strict consistency would entail the validation
of every new rule against the set of rules previously stored, and decid-
ing which rule must be preserved in case of conflict. Another option
would be the segmentation of the rules according to their origin as
namespaces that would be locally consistent.

In the current version of Afanasyev it has been accepted that there
can exist rules mutually inconsistent, even mutually exclusive (e.g.

“Magic does not exist” and “Magic exists”). The reason for this
choice is to provide an open perspective during generation and leave
it up to the human evaluator to decide whether the generated story is
more interesting despite the potential inconsistencies.

A future option could be including non monotonic reasoning[15],
providing default rules, or even developing truth maintenance mech-
anisms (e.g. “Magic does not exist for muggles”). These approaches
are left for later as a future work due to their complexity and impor-
tance.

In addition to the above, the use of a domain-specific glossary
would serve not only for establishing a proper definition of the
knowledge domain, but also for reducing the risk of polysemy. One
of the potential issues with CNL is that they are not specifically de-
signed to address word sense disambiguation. The CNL are usually
focused on analysing only the key words that are relevant for build-
ing the discourse representation structure, so it will be necessary to
validate the portability of this representation over the different ser-
vices.

6 CONCLUSIONS AND FUTURE WORK

The main advantage of the Afanasyev model comes from its mod-
ularity. By means of a flexible architectural structure, a common
knowledge representation model and a set of services with well-
defined interfaces, the proposed framework eases the development
of collaborative story generation ecosystems. Some of these services
might take the form of user interfaces to allow human intervention,
so it also encourages the development of co-creation models.

In the present version of Afanasyev, for every draft processed in
every iteration, there can be generated several continuations that are
added to the population of drafts to process during the next iteration.
On the generated population, a reflection process is applied by means
of the Draft Reflector microservice, and the drafts that it considers
already finished are marked as stories. This process continues until
all drafts are marked as finished or a limit of iterations is reached
(to guarantee completion). In the face of future work, the develop-
ment of a service that helps to decide what is the most appropriate
level of detail in each of the scenes is still pending. This aspect can
be provided in a first instance by a human —applying a co-creation
model—, but it would be perfectly evolved to introduce a component
for automating this task.

In the short term, the next steps are focused on adding the capabil-
ities of different existing storytelling systems such as Charade [33],
STellA [30] and PropperWryter [20]. In a first approach, the goal is
demonstrating the ability of the framework for reconstructing exist-
ing systems and the adequacy of the knowledge representation model
for expressing the needs of various existing systems. Next, the ob-
jective would be the implementation of a real collaboration between
different systems by mixing services from different origins.

ACKNOWLEDGEMENTS

This paper has been partially funded by the project IDiLyCo: Digi-
tal Inclusion, Language and Communication, Grant. No. TIN2015-
66655-R (MINECO/FEDER).

References

[1] Mongodb official site. https://www.mongodb.com/,2017. [On-
line; accessed 29-December-2017].
[2] Roland Barthes, S/Z: an essay, Siglo XXI, 1980.

(3]
(4]

(51

(6]

(8]

(9]
[10]

[11]
[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

Seymour Benjamin Chatman, Story and discourse: Narrative structure
in fiction and film, Cornell University Press, 1980.

Eugenio Concepcidn, Pablo Gervas, and Gonzalo Méndez, ‘An api-
based approach to co-creation in automatic storytelling’, in 6¢h Interna-
tional Workshop on Computational Creativity, Concept Invention, and
General Intelligence. C3GI 2017, (2017).

Eugenio Concepcién, Pablo Gervds, and Gonzalo Méndez, ‘A common
model for representing stories in automatic storytelling’, in 6th Interna-
tional Workshop on Computational Creativity, Concept Invention, and
General Intelligence. C3GI 2017, (2017).

Eugenio Concepcion, Pablo Gervds, and Gonzalo Méndez, ‘A
microservice-based architecture for story generation’, in Microservices
2017, (2017).

Eugenio Concepcién, Pablo Gervéds, Gonzalo Méndez, and Carlos
Leén, ‘Using cnl for knowledge elicitation and exchange across story
generation systems’, in International Workshop on Controlled Natural
Language, pp. 81-91. Springer, (2016).

Eugenio Concepcion, Gonzalo Mendez, and Pablo Gervds, ‘Mining
knowledge in storytelling systems for narrative generation’, in Proceed-
ings of the INLG 2016 Workshop on Computational Creativity in Natu-
ral Language Generation, pp. 41-50, (2016).

Julio Cortézar, Rayuela, Editorial Sudamericana, Buenos Aires, 1963.
Natlie Dehn, ‘Story generation after tale-spin.’, in ZJCAI, volume 81,
pp. 16-18, (1981).

Thomas Erl, Service-oriented architecture: a field guide to integrating
XML and web services, Prentice Hall PTR, 2004.

Eric Evans, Domain-driven design: tackling complexity in the heart of
software, Addison-Wesley Professional, 2004.

Roy Thomas Fielding, Architectural styles and the design of network-
based software architectures, Ph.D. dissertation, University of Califor-
nia, Irvine, 2000.

Martin Fowler, Patterns of enterprise application architecture,
Addison-Wesley Longman Publishing Co., Inc., 2002.

Norbert E Fuchs, ‘Reasoning in attempto controlled english: non-
monotonicity’, in International Workshop on Controlled Natural Lan-
guage, pp. 13-24. Springer, (2016).

Norbert E Fuchs, Kaarel Kaljurand, and Tobias Kuhn, ‘Attempto con-
trolled english for knowledge representation’, in Reasoning Web, 104—
124, Springer, (2008).

Norbert E Fuchs, Kaarel Kaljurand, and Gerold Schneider, ‘Attempto
controlled english meets the challenges of knowledge representation,
reasoning, interoperability and user interfaces.’, in FLAIRS Conference,
volume 12, pp. 664—669, (2006).

Israel Gat and G Succi, ‘A survey of the api economy’, Cut. Consort,
(2013).

P. Gervas, ‘Story generator algorithms’, in The Living Handbook of
Narratology, Hamburg University Press, (2012).

Pablo Gerviés, ‘Propp’s morphology of the folk tale as a grammar for
generation’, in OASIcs-OpenAccess Series in Informatics, volume 32.
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, (2013).

Pablo Gervés, Belén Diaz-Agudo, Federico Peinado, and Raquel
Hervis, ‘Story plot generation based on cbr’, Knowledge-Based Sys-
tems, 18(4), 235-242, (2005).

Joseph Goguen and D Fox Harrell, ‘Style as a choice of blending prin-
ciples’, Style and Meaning in Language, Art Music and Design, 49-56,
(2004).

Jing Han, E Haihong, Guan Le, and Jian Du, ‘Survey on nosql
database’, in Pervasive computing and applications (ICPCA), 2011 6th
international conference on, pp. 363-366. IEEE, (2011).

D Fox Harrell, “Walking blues changes undersea: Imaginative narra-
tive in interactive poetry generation with the griot system’, in AAAI
2006 Workshop in Computational Aesthetics: Artificial Intelligence Ap-
proaches to Happiness and Beauty, pp. 61-69, (2006).

Barbara Hayes-Roth, The blackboard architecture: A general frame-
work for problem solving?, Heuristic Programming Project, Computer
Science Department, Stanford University, 1983.

Sheldon Klein, ‘Automatic novel writer: A status report’, Papers in text
analysis and text description, (1973).

Tobias Kuhn, Controlled English for knowledge representation, Ph.D.
dissertation, Faculty of Economics, Business Administration and Infor-
mation Technology of the University of Zurich, 2009.

Michael Lebowitz, ‘Creating characters in a story-telling universe’, Po-
etics, 13(3), 171-194, (1984).

Michael Lebowitz, ‘Storytelling and generalization’, in Seventh Annual

[30]

[31]

[32]

(33]

[34]

[35]

[36]

(371

[38]

[39]

[40]

[41]

[42]

Conference of the Cognitive Science Society, pp. 100109, (1985).
Carlos Le6n and Pablo Gervis, ‘Creativity in story generation from the
ground up: Nondeterministic simulation driven by narrative’, in 5th In-
ternational Conference on Computational Creativity, ICCC, (2014).
Uri Margolin, Peter Hiihn, Jan Christoph Meister, John Pier, and Wolf
Schmid, “The living handbook of narratology’, (2013).

James R. Meehan, ‘Tale-spin, an interactive program that writes sto-
ries’, in In Proceedings of the Fifth International Joint Conference on
Artificial Intelligence, pp. 91-98, (1977).

Gonzalo Méndez, Pablo Gervas, and Carlos Ledn, ‘On the use of char-
acter affinities for story plot generation’, in Knowledge, Information
and Creativity Support Systems, 211-225, Springer, (2016).

Nick Montfort, ‘Curveship’s automatic narrative style’, in Proceedings
of the 6th International Conference on Foundations of Digital Games,
pp. 211-218. ACM, (2011).

Nick Montfort, Rafael Pérez, D Fox Harrell, and Andrew Campana,
‘Slant: A blackboard system to generate plot, figuration, and narrative
discourse aspects of stories’, in Proceedings of the fourth international
conference on computational creativity, pp. 168—175, (2013).

Mike P Papazoglou, ‘Service-oriented computing: Concepts, character-
istics and directions’, in Web Information Systems Engineering, 2003.
WISE 2003. Proceedings of the Fourth International Conference on, pp.
3-12. IEEE, (2003).

R. Perez y Perez, MEXICA: A Computer Model of Creativity in Writing,
Ph.D. dissertation, The University of Sussex, 1999.

Mark O Riedl and Robert Michael Young, ‘Narrative planning: bal-
ancing plot and character’, Journal of Artificial Intelligence Research,
39(1), 217-268, (2010).

Rolf Schwitter, ‘Controlled natural languages for knowledge represen-
tation’, in Proceedings of the 23rd International Conference on Com-
putational Linguistics: Posters, COLING 10, pp. 1113-1121, Strouds-
burg, PA, USA, (2010). Association for Computational Linguistics.
Mei Si, Stacy C Marsella, and David V Pynadath, ‘Thespian: Model-
ing socially normative behavior in a decision-theoretic framework’, in
Intelligent Virtual Agents, pp. 369-382. Springer, (2006).

Scott R. Turner, Minstrel: A Computer Model of Creativity and Story-
telling, Ph.D. dissertation, University of California at Los Angeles, Los
Angeles, CA, USA, 1993. UMI Order no. GAX93-19933.

Tony Veale, ‘Creativity as a web service: A vision of human and com-
puter creativity in the web era.’, in AAAI Spring Symposium: Creativity
and (Early) Cognitive Development, (2013).

