
Automatic Customization of Non-Player
Characters using Players Temperament ?

Hector Gómez-Gauch́ıa and Federico Peinado

Depto. Ingenieŕıa del Software e Inteligencia Artificial
Universidad Complutense de Madrid, Spain

hector@sip.ucm.es, email@federicopeinado.com

Abstract. Believability is a basic requirement for non-player characters
of videogames. Players enjoy characters with personalities that reflect hu-
man behavior, specially if those personalities combine well with players’
temperaments. This paper explains a model for customizing automati-
cally non-player characters (NPC) according to the players temperament,
which is obtained before the game session. The model uses Case-Based
Reasoning and Ontologies to adapt the behavior of a NPC, which is the
companion of a player character in the described example.

Keywords. Player Modeling, Narrative Environments, Interactive Dig-
ital Storytelling in Entertainment, Affective Computing

1 Introduction

Videogames are pieces of procedural art. The goal of this art is evoking emotion
in the player through performance of tasks in a fantasy world. There are many
possible ways of evoking emotion, but it is well known that each player is emo-
tionally affected in a particular way, depending on how the tasks of the game
relate with his temperament.

In section 2 part of the state-of-art in game customization is presented. Re-
search on game adaptability is significantly less developed than the same field of
hypermedia or intelligent tutoring systems [2]. Usually current work is usually
more related to the automatic adjustment of the difficulty level of action or strat-
egy games, while this paper focus on Role-Playing Games (RPGs), characterized
by strong emphasis on social interaction with Non-Player Characters (NPCs) as
part of the in-game tasks instead of combat or management of resources.

NPCs are characters of the game which are controlled by the system and
which are able to interact with the player’s avatar interchanging items and in-
formation. The scenario of section 3 represents a short dialogue with an NPC.
The model, explained in sections 4 and 5, is illustrated with this scenario because
conversation is very important in the game experience of RPGs.
? Supported by the Spanish Ministry of Education and Science (TIN2005-09382-C02-

01, TIN2006-15140-C03-02 and TIN2006-14433-C02-01 projects), Complutense Uni-
versity of Madrid and the G.D. of Universities and Research of the Community of
Madrid (UCM-CAM-910494 research group grant).

Players enjoy when NPCs behave as they expect and these expectations
are projections of their temperaments. We represent temperaments as a set of
static values established for the current player before the game session by a
questionnaire following the Keirsey’s theory [6], described in section 4. The model
has a knowledge base with different versions of the dialogue with an NPC related
to different combinations of temperament values. Usually, each player has a new
combination of those values, so a particular version of the dialogue has to be
generated automatically using the knowledge base and a set of variations of the
behavior of the NPC.

2 Current Approaches to Game Customization

Traditionally, videogames have hard-wired character behavior. Even RPGs or
graphic adventures offered reasonable but simple conversation trees or state-
based interaction with NPCs. New titles “sell” exciting features of their NPCs as
improved intelligence, emotion or autonomy but few games are really adaptable
to each particular player without some manual configuration. Blade Runner is
a classical example of re-playable game whose NPCs do not act the same way
each time the game is played; but the variations do not adapt the content of the
game to the characteristics of the players.

A well-known example of automatically customizable game is Max Payne.
Most of games have just a short number of difficulty levels that has to be man-
ually selected by the player. In Max Pay, an auto-dynamic difficulty adjustment
mechanism is implemented, allowing a more adaptable game experience to the
skills of the player, but not to his temperament.

Fable uses a moral approach for the automatic customization of game content.
The actions of the players can be considered good or bad by the system, and, as a
consequence, their reputations change during the game, affecting the behaviour
of NPCs as well. It is an interesting approach but customized only for the black-
or-white fictional temperament of the player’s avatar, not for the player himself.

There are many research projects trying to adapt game contents according to
the feedback of the player. From the point of view of social interaction, Façade
[7] is a good example. The NPCs of this interactive drama are able to speak,
express emotions and even understand what the player is saying in a simplified
English language. The games chooses different endings based on decisions taken
by the player’s avatar, but the game does not model the player’s temperament.

Instead of developing an standalone system, it is becoming popular the use
of middleware for the dynamic connection of external intelligent systems with
commercial game engines to modify the behavior of NPCs and other game func-
tionalities. The automatic NPC customization system could be implemented
specializing some of these software platforms as Zocalo1, based on Web Services

1 http://zocalo.csc.ncsu.edu/

about Planning, I-Storytelling2, based on Hierarchical Task Networks or KIIDS3

based on Case-Based Reasoning and Ontologies.

3 The Example Scenario

The automatic NPC customization model presented here is generic, so it needs to
be instantiated for a particular application involving some virtual environment,
NPCs and players such as a commercial videogame.

This example scenario is an independent adventure implemented as a simple
module of Neverwinter Nights4. The player plays the role of Drax, a knight
returning home after a battle against the forces of Evil. When Drax enters his
castle, one servant – a NPC – is waiting for him. The interaction with this NPC
is just a short introduction to the adventure of the module that the model is
trying to customize. Usually short conversations with secondary characters are
not relevant for the global game experience, but this example is useful enough
to show how the model works.

In Figure 1, we show an informal version of the scenario dialogue. Besides
the canned text of dialogues, we focus on other features which change during the
customization process. There are also different NPC animations in each dialogue
mode. By default the servant falls to the floor and performs fast and repeated
movements of worship to his lord. That is considered a funny animation for a
fantasy game like this, but probably it is not the most appropriated animation
from the point of view of a player with a serious temperament –this gesture
could be consider grotesque or even offensive by some cultures or religions–.

4 Elements of the Automatic NPC Customization Model

Our line of work during the last years has been the research of different tech-
niques and approaches to build Knowledge-Intensive Case-Based Reasoning (KI-
CBR) systems, i.e.: integrated Knowledge Based Systems that combine case spe-
cific knowledge with models of general terminological domain knowledge [3, 4].
Like in previous works we use Description Logics (DLs) based languages that are
commonly used to implement ontologies, and have been proven to be useful to
formalize aspects of representation and reasoning in CBR systems [8, 3]. We use
ontologies to represent the explicit knowledge of the model: the temperament
theory, the possible variations to customize the game and the player’s profile
which includes his own temperament and personal data.

In Figure 2 we describe the main elements of the proposed model. There is
a player playing the game, which has a standard NPCs behavior. A CBR task
generates an automatic NPCs behavior customization, which consists in a set of

2 http://www-scm.tees.ac.uk/users/f.charles/
3 http://federicopeinado.com/projects/kiids/
4 http://nwn.bioware.com/

Servant: Welcome home, sir. [Repeating fast worship movements]
Drax: Hum, I feel so tired... Please, servant, prepare the bath.

Servant: Immediately, sir. [Running to the bathroom]

Fig. 1. Example dialogue at the 13th level of politeness

actions performed using native commands of the game or scripts developed ad-
hoc. After this customization the player finds NPCs behavior more similar to his
temperament. The overall reasoning task follows this cycle: the model retrieves
a case with the most similar temperament to that of the player. Inside the case
there is a set of game variations to customize it to player’s temperament. If
the distance between the retrieved case is bigger than a specific threshold, the
model adapts the variations using the distance. The player profile stores all this
information to use it every time that specific player plays again. The ontologies
are describen in next subsections.

From a practical point of view, Neverwinter Script implements the plain
interaction – without temperament-dependent modifications – using the Aurora
toolset which is included in Neverwinter Nights.

The case base has cases which contain pairs of temperament-behavior change.
If the temperament of the current player is exactly the same as one in the case
base, the corresponding behavior change is performed; otherwise the system
search for a similar temperament in the case base and the corresponding behavior
is used as a basis to create a more suitable one.

This model relies heavily on ontologies. The terms of an ontology describe
the static knowledge of each aspect of the design. Ontology is a term borrowed
from philosophy that refers to the science of describing the kinds of entities in the
world and how they relate each other. Ontologies based on DLs paradigm include
definitions of concepts –classes–, roles –properties– and individuals. Given such
an ontology, the formal semantics of the language that we use specifies how to
derive its logical consequences, i.e. facts not literally present in the ontology, but
entailed by the semantics. To formalize our ontologies we use the DL-specific

Player

Temperament

- What to Value

- Ways of :

- Communicating

- Thinking

- Using time

- Using tools

Game Variations:

- Dialogue-mode

- Speed

User’s profile:

-His temperament

-Personal Data

Ontologies

& Case Bases

Game Variations for

this specific player’s

temperament Case Based

Reasoning

NPCs customization

Standard NPCs behavior

NPCs behavior customized

for the player’s temperament

The Game

Fig. 2. Elements of the automatic NPC customization model

part of the Ontology Web Language5 (OWL DL). These entailments may be
based on a single document or multiple distributed documents that we combine
using the import OWL mechanisms. The OWL DL reasoning capabilities relies
on the good computational properties of DLs.

We define cases as individuals of a concept which belongs to the ontology. A
case is a complex individual that has several slots and facets represented here as
properties and data type properties. Each property may contain individuals of
other concepts of the same ontology or other imported ontologies. The advantage
of this approach is that a reasoner may check the consistency and may classify
the kind of individuals automatically. We use very narrow ontologies and cases
to simplify the design and updates. This model is embedded in another model
[5], and both share the ontologies and case bases.

Temperaments: TEMPOnto and the Case Base We use temperament the-
ory of David Keirsey [6], which is widely applied in psychology and in companies
to interview job candidates. Keirsey’s theory is centered in the long-term behav-
ior patterns, i.e., what people do. It is an interpretation of the Myers-Briggs
and Carl Jung’s writings on personality types, more interested in what people
think. We consider Keirsey’s model more relevant for videogames because acting
in them is usually more important than thinking. The theory defines four ba-
sic temperaments. Temperaments are not variable as emotions or feelings. Each
person has a unique proportional combination of the four temperament types.

In this article we use an example where we consider an unique proportional
combination as the description of a new case: Artisan 10%, Guardian 10%, Ide-
alist 30% and Rational 50%.

5 http://www.w3.org/TR/owl-guide/

Normally one of the temperaments is predominant, Rational in the example.
This means that the person will behave most of the time like that temperament.

- Present: pragmatism
- Future: skepticism
- Past: relativism
- Place: intersections
- Time: intervals

- Self-Esteem: ingenious
- Self-Respect: autonomous
- Self-Confidence: resolute

- Being: calm
- Trusting: reason
- Yearning: achivement
- Seeking: knowledge
- Prizing: deference
- Aspiring: wizard

- Mating: mindmate
- Parenting: individuator
- Leading: visionary

Orientation

Self-Image

Value

Social Role

Character

Interest

:

- Expresive role: inventor
- Reserved role: architect

- Education: sciences
- Preoccupation: technology
- Vocation: systems

RATIONAL
Communication: abstract
Implementation: utilitarian
DESCRIPTION :

: deductive
- Referential: categorical
- Syntactical: subjunctive
- Rhethorical: technical

: strategic
Directive role: coordinator
- Expresive role: fieldmarshal
- Reserved role: mastermind
Informative role: engineer

Language

Intellect

(Continues)

Trait

Content

Aspect

Fig. 3. The basic temperament Rational and its traits

We describe each temperament type by a set of traits composed by some as-
pects. In Figure 3 there is a complete set of traits for the Rational temperament.
Each trait characterizes the way people behave in relation with its set of aspects.

For our example we consider the trait “value”, that means what people will
value most in relation with the different aspects of that trait. The aspects of the
“value” trait are shown in Figure 3. One of them is being, that means how people
appreciate to be. Rational people value being calm. The word “calm” is the value
of the aspect “being”. To represent it in the ontology, shown partially in Figure
5, we create one individual temp:ValueBeingCalmX as instance of Trait.

In contrast with the previous example, Artisan people value most being ex-
cited. Another example is the trait Language which has a rhetorical aspect.
Rational people use a heterodox kind of rhetorical aspect. In contrast, Artisans
prefer a technical kind of rhetorical aspect.

We consider that if the model may use different aspects of NPCs behavior
according to the player’s temperament, the player will feel more comfortable
and enjoy more the videogame. We personalize the game applying variations of
the game, such us the speed of movements or the language of the NPCs. Each
variation may affect some traits of one specific temperament.

Variations: VARIOnto and the Case Base We call variations to all the
possible changes that we may execute to personalize a domain. For example, in
the domain of our example scenario, we decide to customize the game by the
implementation of the idea represented by one assertion: “a polite NPC with
slow movements makes you feel calm”. From this assertion we deduce that is

important to customize two aspects, the politeness of the NPC’s sentences and
the speed of its movements.

To customize the NPC there are two kinds of variations depending on its
relation to the virtual environment we use: native variations, which are direct
commands to execute in the game, such as changing the speed of the animation of
an NPC, or plug-in variations, which are embedded scripts that can be executed
in the game at runtime, such as changing the dialogue mode of an NPC.

The technology we use to send commands to Neverwinter Nights is Shadow
Door6, a DLL for Neverwinter Nights Extender7 which allows external systems
to send messages by sockets to the core of the game.

These messages perform native variations in the game or activate plug-in
variations. Native variations are easier to implement – just changing accordingly
built-in variables of the game that controls the behaviour of NPCs –. Plug-in
variations are more interesting. This is the case of the “change dialogue-mode”
script in our scenario. We developed that script to maintain a variable “dialogue-
mode”; its values represent possible dialogues of the NPC, i.e.: more or less polite,
funny, aggressive, etc. These variations relate with the different temperaments.
For each variation there are several degrees of intensity in an ordered list. For
instance, the 1st level of politeness is the most polite: this variation uses a set of
very polite sentences that replace the complete text of the conversation between
Drax and his servant.

Figure 5 illustrates the process of implementing the assertion. In the ontology
is the variation concept, which has several properties. The values of a property
are individuals of other concepts. We create a variation, the NPCcalmProducer1
instance of NPCcalmProducer. The main properties of a variation are:

– affectToTraits has several traits of temperaments which are affected by the
variation. Our variation example has the temp:ValueBeingCalmX trait.

– hasExecutionSteps are the necessary actions to execute the variation. In
our example we have two actions, “to change the NPC dialogue mode to
politeLevel-8” and “to change the NPC speed to 0.75”. To implement these
actions we use commands called ExecutionSteps.
• change!#dialogue-mode#politeLevel-8, which is implemented by the

individual execStepChangeDialoguePolite of the ExecutionStep concept.
• change!#speed#0.75 which is implemented by the individual execStepChange-

SpeedSlow of the same concept.

Each ExecutionStep individual has two main properties:

– hasActivationCommand has the command to execute the step, e.g.: “change!”
in our example. For the speed command, “change!” corresponds to a native
command of Neverwinter Script which changes the speed of the NPC be-
havior. For the dialogue-mode command, “change!” corresponds to a script
implemented specifically by the customization developers for choosing dif-
ferent conversations trees.

6 http://www.cs.northwestern.edu/ rob/software/shadow%20door/
7 http://nwnx.org/

– hasActivationParameters the parameters of the command. The parameters
are of the ExecParam concept that is explained below.

The ExecParam concept is specially important for the adaptation of cases.
To adapt a case we need a range of flexibility. We get it by the declaration of
possible ranges. Each one refers to one of the basic temperament. We continue
in our example only with the ExecParamSetDialoguePolite, because execParam-
SetSpeedSlow is too simple to illustrate the whole adaptation mechanism. The
main properties of the ExecParam concept are:

– hasExecParamName has the literal name of the parameter to be executed
by the command. In the example they are “dialogue-mode” and “speed”.

– hasExecParamValue has the value of the parameter. In the example they are
“politeLevel-8” and “0.75”.

– possibleAdaptationRange has four subproperties: idealistRange, artisanRange,
rationalRange, guardianRange. It indicates how strong is the effect for each
basic temperament Each one has a list of values. They describe the distance
of the value to that specific temperament. The first value in the list is the
“nearest” for that temperament, i.e.: with the strongest effect, and the last
value is the “farthest” for that temperament, i.e.: with the weakest effect.
An example of these lists is in Figure 4.

– hasExecParamRelevancy indicates the general relative importance in the
adaptation process. It contains the corresponding four subproperties. Each
subproperty is the relative importance specifically for each temperament.
For example, a parameter has a very low value in guardianRelevancy be-
cause it is very little related with that temperament, e.g.: the politeness is
less relevant for Guardian people than for Rational people.

Mapping Temperaments into Variations As we mentioned before, each
variation may affect some traits of a specific temperament. In Figure 5 we depict
the mechanism to represent this process: each variation is related to specific
traits and values of temperaments, not just with the temperament itself. This
relation is performed using affectToTraits property of Variation concept, which
contains the affected traits of Temperament concept. In affectToTraits property
of our example we have ValueBeingCalmX which is of the concept of value trait
for Rational temperament. The way to promote this calm situation is with the
execution steps: execStepChangeDialoguePolite and execStepChangeSpeedSlow.

Other important aspect to represent in the model is that each variation affects
in a different way to each temperament. In our example, the dialogue mode of
the NPCs affects value trait of Rational temperament in a very different way
to the same trait of Artisan temperament. This is because the first one has
“calm” as value in the value trait and the latter has “excited”. The mechanism
to represent the different effects in both temperaments is through – see Figure
4– the execution parameters contents of the execution steps belonging to the
variation. We describe how we adapt the contents in section 5.

HasExecParamName HasExecParamValue

HasExecParamUseInStep

Fig. 4. ExecParam of a variation concept and ranges to be adapted

User Types and Users: USEROnto and the Case Base In the USEROnto
there are two kinds of cases, the UserType and the User. The User case describes
the player knowledge needed by the model and has these main properties:

– hasTemperamentProportions of the four basic temperaments in %.
– hasUserType that is the best match of player types.
– hasUserAdaptations with adaptations of that UserType to the specific player.

The property hasUserAdaptations is empty when the UserType matches ex-
actly or very near with the player’s temperament proportions. The adaptations
are obtained from the ranges of each variation explained in VARIOnto.

The UserType case represents the unique proportion of the four basic tem-
peraments and the variations generated and stored for it. Each case in the case
base is one of these combinations. To avoid a huge number of cases, a minimum
gap between cases is defined a priori. The name of the example UserType case
is UserType-A10-G10-I30-R50. The main properties are:

– hasTemperamentProportions is the same property as in the player case.
– hasUserType with the variations for this player type.

5 Process of the Automatic NPC Customization Model

We use the previous example to illustrate the general reasoning cycle in our
model that follows the classic CBR cycle [1]. We query the CBR system with a
description based on the result of the Keirsey’s questionnaire. Suppose the form
gives us the following player temperament proportions: Artisan 10%, Guardian
10%, Idealist 30% and Rational 50%. The reasoning cycle retrieves the most
similar case (e.g. Artisan 10%, Guardian 30%, Idealist 30% and Rational 30%).

--> : “a polite and slow NPC makes you feel calm”The assertion

Variation: NPCcalmProducer
TEMPonto

Character

Interest

Orientation

Self-Image

Value

Social Role

:

- Expresive role: inventor
- Reserved role: architect

- Education: sciences
- Preoccupation: technology
- Vocation: systems

- Present: pragmatism
- Future: skepticism
- Past: relativism
- Place: intersections
- Time: intervals

- Self-Esteem: ingenious
- Self-Respect: autonomous
- Self-Confidence: resolute

- Being: calm
- Trusting: reason
- Yearning: achivement
- Seeking: knowledge
- Prizing: deference
- Aspiring: wizard

- Mating: mindmate
- Parenting: individuator
- Leading: visionary

RATIONAL
Communication: abstract
Implementation: utilitarian
DESCRIPTION :

: deductive
- Referential: categorical
- Syntactical: subjunctive
- Rhethorical: technical

: strategic
Directive role: coordinator
- Expresive role: fieldmarshal
- Reserved role: mastermind
Informative role: engineer

Language

Intellect

-->“Rational Temperament
values being calm”

VARIonto

Fig. 5. An assertion as a variation related to a specific trait of a temperament

To measure the similarity between cases we use the following definition of
distance which is a sum of the differences for each of the four temperaments:

T=Rational

T T T(%NewCase - %retrievedCase) * CorrectionFactor
TArtisan=

å

The %NewCase is the proportions of the query. There is a correction factor
that is proportional to the previous difference. The correction factor is very
high when the retrieved case is very far for one of the temperaments with a
high percentage, because this retrieved case is not a good case even if the other
percentage temperaments are similar.

The system reuses the retrieved case by adapting the retrieved case output
slots, i.e.: a set of variations for each of the four basic temperaments. Variations
are in its own case base. The adaptation actions are calculated by the difference
between the proportions in the query and in the retrieved case; in our example
the adaptation actions are: Artisan stays unmodified, make Guardian decreasing
20%, make Rational increasing 20% and let Idealist without modifications. After
the adaptations, the system executes the modified variations. These variations
represent the solved case.

The system performs the adaptation of each variation using the possibleAdap-
tationRange property that has the possible ranges for each temperament as de-
scribed before. Figure 4 is our variation example; we see that the range for each
temperament is a list of values, e.g.: rationalRange. The total number of values
(e.g.: 3) is equivalent to 100%. To make the retrieved case 20% more Rational we
calculate that proportion in the list and we choose the element which occupies

the position corresponding to the obtained proportion. The current mood filters
the adaptation, increasing or decreasing some of these adaptations.

Next tasks that are under development are revision of the solved case using
the feedback of the player after the game session, and remembering of the useful
cases to be reused in further iterations.

Servant: Welcome to the castle, sir! Everybody has heard about your courage in the battlefield.
Drax: I am tired because of the battle, servant. Prepare my bath.

Servant: At your command, my lord. [Saluting him] A perfumed bath is ready for you.

Fig. 6. Example dialogue at the 8th level of politeness

In Figure 6 the customized dialogue is shown. For the same scenario of Figure
1 the player obtains a different conversation because the system is aware of
her temperament and therefore of the preferences on NPCs. That is the reason
why the politeness of the conversation has increased from the 13th to the 8th
position. The speed of the movement decreased proportionally, but it cannot be
appreciated in a screenshot.

6 Conclusions

We present a model for customizing automatically NPCs according to the player’s
temperament. Using Ontologies and CBR the system modifies the animations of
two characters and their dialogue in the context of a fantasy RPG.

The development is not mature enough for being formally evaluated, but
some limitations arise from a practical point of view: e.g. an out-of-game ques-
tionnaire could not be the most comfortable way to identify the real temperament
of the player. The case base of mappings between temperaments and NPC be-
haviors is time consuming because it has to be refined based on the experience
of players; this refinement applies too to the implementation of each NPC be-
haviour, defined in abstract terms, for a specific platform as Neverwinter Nights

or other videogame engine. Another limitation is the difficult integration with
other architectures of autonomous characters whose personality may eventually
contradict the behavior recommended by the system.

Besides the areas mentioned in the example, there are other areas of cus-
tomization for NPC behavior, such as abilities, appearance (race, clothes, etc.),
social role, etc. The same approach can be used for customizing those features.
Also it can be used with any number of secondary characters as villains, partners,
lovers, etc. Every element in a game is susceptible of being customized according
to temperaments of players, as the weather, ambient light, camera settings, etc.

Modelling artificial temperaments of NPCs is also possible using the same
theory presented here or other temperament theories. Such application could let
the system customize whole groups of characters as families, troops, or even the
whole cast of the game using a compatibility table of temperaments.

The process of customization according to different player temperaments is
independent of the game domain and genre, except in the set of variations that
have to be specifically implemented for the game (VARIOnto).

Currently the temperament is a static value in the model taken from the
results of a questionnaire, but a future line of research will be to identify dy-
namically other values (e.g. player emotions) according to the actions of the
avatar using specific heuristics.

References

1. E. Armengol and E. Plaza. A knowledge level model of knowledge based reasoning.
In S. Wess, K. D. Althoff, and M. M. Richter, editors, Proceedings of the 1st Eu-
ropean Workshop on Topics in Case-Based Reasoning, Kaiserslautern, Germany -
EWCBR’94, pages 53–64. Springer–Verlag, Berlin, 1994.

2. P. Brusilovsky. Methods and techniques of adaptive hypermedia. User Modeling
and User Adapted Interaction: Special issue on adaptive hypertext and hypermedia,
6(2-3):87–129, 1996.

3. B. Dı́az-Agudo and P. A. González-Calero. An architecture for knowledge intensive
CBR systems. In E. Blanzieri and L. Portinale, editors, Advances in Case-Based
Reasoning – (EWCBR’00). Springer-Verlag, Berlin Heidelberg New York, 2000.

4. B. Dı́az-Agudo and P. A. González-Calero. Knowledge intensive cbr through on-
tologies. Expert Update, 2003.

5. H. Gómez-Gauch́ıa, B. Dı́az-Agudo, and P. A. González-Calero. Cobber, toward
an affective conversational ki-cbr framework. In B. Prasad, editor, B. Prasad(Ed.)
Procs of the 2nd Indian International Conference on Artificial Intelligence IICAI-
05, pages 1804–1820, Pune, India, December, 20-22 2005. IICAI.

6. D. Keirsey. Please Understand Me II. Prometheus Nemesis Book Co Inc., 1998.
7. M. Mateas and A. Stern. Façade: An experiment in building a fully-realized in-

teractive drama. In Game Developer’s Conference, Game Design track, San Jose,
California, USA, 2003.

8. S. Salotti and V. Ventos. Study and formalization of a case-based reasoning system
using a description logic. In B. Smyth and P. Cunningham, editors, Advances in
Case-Based Reasoning – (EWCBR’98). Springer-Verlag, 1998.

